Abstract:
본 발명은 반도체 기판 및 이의 제조 방법에 관한 것으로, 본 발명은 저온에서 반도체막의 증착이 이루어져, 결정질 및 비정질이 혼재된 반도체막을 형성할 수 있는 반도체 기판 및 이의 제조 방법을 제공한다. 따라서, 전기적 특성이 우수한 결정질 비정질이 혼재된 반도체막을 형성하는 것이 가능하다.
Abstract:
PURPOSE: Carbon nano-tube and a method for manufacturing the same are provided to increase the state density of electrons around Fermi level and lower a work function by combining ruthenium nano-particles with the wall of the carbon nano-tube. CONSTITUTION: A method for manufacturing carbon nano-tube includes the following: Ruthenium dioxide powder is deposited on carbon nano-tube. The deposited ruthenium dioxide powder is reduced to form ruthenium nano-particles. The carbon nano-tube is directly grown on a substrate on which a buffer layer and a seed layer are formed. The buffer layer is formed based on one selected from a group including SiO_2, Al_2O_3, and MgO. The seed layer is formed based on one metal selected from a group including nickel, iron, and cobalt.
Abstract:
A density controlled carbon nanotube field emission source, a preparation method thereof, and a density control method of carbon nanotube are provided to improve the structural stability by lowering the density of the carbon nano tube layer. A buffer layer(110) is formed on the top of the substrate(100). A catalyst layer(120) is formed on the top of the buffer layer. The buffer layer is formed of the chrome(Cr), the tantalum(Ta), and the titanium(Ti) or their alloy. The catalyst layer is formed of the nickel(Ni), the iron(Fe), and the cobalt(Co) or their alloy. The carbon nanotube is perpendicularly grown up on the catalyst layer using the direct current plasma assisted chemical vapor deposition under the hydrocarbon gas environment including the methane gas, the acetylene gas or the ethylene gas. The substrate including carbon nanotube is dipped in the carbon nanotube tip process solution in 5 to 10 minutes. The carbon nanotube tip process solution is removed from the carbon nanotube or the substrate.
Abstract:
본 발명은 탄소나노튜브의 밀도제어방법, 이를 이용한 밀도가 제어된 탄소나노튜브 전계방출원 및 이의 제조방법에 관한 것이다. 보다 상세하게, 본 발명은 기판 상에 형성된 탄소나노튜브를 탄소나노튜브 팁처리 용액으로 처리하는 단계를 포함하는 탄소나노튜브의 밀도제어방법, 및 이를 이용한 탄소나노튜브 전계방출원의 제조방법을 제공한다. 또한 본 발명은 기판; 기판 상에 형성되고, 탄소나노튜브 팁처리 용액으로 처리된 탄소나노튜브층; 및 탄소나노튜브 층의 상부에 형성된 금속층을 포함하는 탄소나노튜브 전계방출원을 제공한다. 본 발명에 따르면, 적은 비용과 간단한 용액처리공정만으로도 탄소나노튜브의 팁부분이 모인 집합체들로 이루어진 구조를 통하여 탄소나노튜브층 말단의 밀도를 낮게 제어한다. 또한, 동시에 구조적으로도 안정하여 전자방출능이 우수하다. 탄소나노튜브, 전계방출원, 밀도, 용액처리, 금속층
Abstract:
본 발명은 식각 방법에 관한 것이다. 본 발명에 의하면, RF 파워를 온 주기 및 오프 주기를 반복하고, 기재(substrate)에 상기 온 주기 및 오프 주기에 대응하여 각각 마이너스 파워 주기 및 플러스 파워 주기를 반복하여 상기 기재 상의 피식각물을 식각하는 식각 방법이 제공된다.
Abstract:
PURPOSE: A graphene nanoribbon forming method and a transistor manufacturing method using the same are provided to easily adjust the width of graphene nanoribbon by determining the width of a graphene thin film depending on the width of a phenanthrene thin film. CONSTITUTION: A graphene nanoribbon forming method includes the following steps: a thin film is formed on a substrate(S110); and the substrate is heated by supplying carbon supplying gas in order to form a graphene thin film on a phenanthrene thin film which is formed by a focused ion-beam process(S120). The carbon supplying gas is at least one selected from a group including carbon compounds composed of carbon monoxide, methane, ethane, ethylene, ethanol, acetylene, propane, propylene, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, and toluene. [Reference numerals] (AA) Start; (BB) End; (S110) Forming a phenanthrene thin film on a substrate using a focused ion-beam process; (S121) Heating the substrate under hydrogen atmosphere; (S123) Forming a graphene thin film by supplying inert gas and carbon supplying gas on the substrate
Abstract:
PURPOSE: A method for manufacturing a magnetic random access memory is provided to improve the reliability of a device by removing the metal residue in a sidewall of an MTJ structure. CONSTITUTION: A laminate structure(40) with an MTJ structure is formed on a substrate. Laminate patterns with the MTJ structure are formed by patterning the laminate structure. Metal residue accumulated in the sidewalls of the laminate patterns are etched by using neutral beams(NB1,NB2).
Abstract:
본 발명은 반도체 기판 및 이의 제조 방법에 관한 것으로, 본 발명은 저온에서 반도체막의 증착이 이루어져, 결정질 및 비정질이 혼재된 반도체막을 형성할 수 있는 반도체 기판 및 이의 제조 방법을 제공한다. 따라서, 전기적 특성이 우수한 결정질 비정질이 혼재된 반도체막을 형성하는 것이 가능하다.
Abstract:
A carbon nanotube field emission source comprising a noble metal layer and a manufacturing method thereof are provided to enhance thermal conductivity and electrical conductivity by using a noble metal layer as a buffer layer. An Nb layer is formed on an upper surface of a substrate. A noble metal layer is formed on the upper surface of the substrate including the Nb layer. A carbon nanotube is formed on the upper surface of the substrate including the noble metal layer. A heat treatment process for the substrate including the carbon nanotube is performed by using a microwave or an inductive coil. The heat treatment temperature is equal to and less than 400 degrees centigrade. The noble metal layer is composed of one or more elements selected from a group including Au, Ag, Cu, and an alloy comprising one of Au, Ag, and Cu.