Abstract:
The present disclosure provides a culture device for enumerating colonies of microorganisms. The device can comprise a base, a coversheet, and a nonporous spacer member disposed therebetween. The spacer member comprises an aperture that defines a growth compartment. At least one adhesive layer adhered to the base or the coversheet in the growth compartment. A cold water-soluble gelling agent and a dry oxygen-scavenging reagent are adhered to the at least one adhesive layer. The oxygen-scavenging reagent consists essentially of particles having a diameter of less than 106 microns.
Abstract:
An optical device for sensing a presence of an analyte in a person is provided. The optical device includes a light source, an optical stack, and a reader. The light source emits a first light having a first wavelength. The optical stack is placed on a skin of the person. The optical stack includes a sensor material and an optical filter. The sensor material emits a second light having a second wavelength when irradiated with the first light. An optical property of the second light is sensitive to the presence of the analyte. The optical filter is disposed on the sensor material and includes a plurality of microlayers numbering at least 10 in total. The optical filter has different first and second transmittances at the respective first and second wavelengths.
Abstract:
A device for growing microorganisms is provided. The device includes a body member comprising a self-supporting, waterproof substrate, a layer of adhesive disposed on the substrate, a powder adhered to the adhesive, a cover sheet adhered to the body member, and a dry composition including a mixture of hydroxypropylmethylcellulose and guar gum adhered to the cover sheet or the substrate. The powder comprises a cold-water-soluble gelling agent and one or more nutrient for growing microorganisms. The composition, when reconstituted with water, resists liquefaction by microorganisms. A method of culturing microorganisms using the device is also provided.
Abstract:
A fibrin-coated wound dressing article having a flexible film layer, a pressure-sensitive adhesive layer disposed on the flexible film layer, and a fibrin powder layer disposed on a surface of the pressure-sensitive adhesive layer opposite the flexible film layer. Methods of making and using fibrin-coated wound dressing articles are included.
Abstract:
A latent effervescent body comprising a selective agent is disclosed. A method of using the latent effervescent body in a method to selectively enrich a target microorganism is also disclosed. The method comprises providing a sample, a culture medium, and the latent effervescent body. The method further comprises contacting the sample, the culture medium, and the latent effervescent body under conditions to facilitate growth of the target microorganism. The method further comprises releasing the selective agent from the latent effervescent body. Optionally, the method includes detecting a microorganism.
Abstract:
Methods for detecting target biological analytes within sample material using acousto-mechanical energy generated by a sensor are disclosed. The acousto-mechanical energy may be provided using an acousto-mechanical sensor, e.g., a surface acoustic wave sensor such as, e.g., a shear horizontal surface acoustic wave sensor (e.g., a LSH-SAW sensor). The detection of the target biological analytes in sample material are enhanced by contacting the target biological analyte and/or the sensor surface with liposomes that amplify the sensor sensitivity by (1) modifying the rheological properties of the fluid near the sensor surface; (2) changing the mass attached to the surface; and/or (3) modifying the dielectric properties of the fluid near the sensor surface, the sensor surface itself and/or any intervening layers on the sensor surface.
Abstract:
A dressing system for sensing a presence of an analyte includes a first layer, and a second layer facing a first major surface of the first layer. The second layer has a second permeability to the analyte less than a first permeability of the first layer. The dressing system further includes a first fiber configured to deliver an excitation light. The dressing system further includes at least one sensor layer including a sensor material configured to receive the excitation light from the first fiber and emit an emitted light in response to the excitation light. The dressing system further includes a second fiber separate from the first fiber and configured to receive the emitted light from the at least one sensor layer.
Abstract:
A method includes applying an electrical signal to a tissue and measuring an impedance of the tissue based on the applied electrical signal. The method further includes determining information indicative of a stage of wound healing based on the impedance and outputting information indicative of the stage of wound healing.
Abstract:
A method is described. The method includes mixing fibrin and collagen to form a mixture including collagen and fibrin; and reducing the salt concentration below the threshold concentration to form a fibrin. A collagen-fibrin composition is also described. The composition includes a collagen and a fibrin; wherein the composition has a salt concentration below the threshold concentration to form a fibrin.
Abstract:
The present disclosure provides a culture device for enumerating colonies of microorganisms. The device can comprise a base, a coversheet, and a nonporous spacer member disposed therebetween. The spacer member comprises an aperture that defines a growth compartment. At least one adhesive layer is adhered to the base or the coversheet in the growth compartment. A cold water-soluble gelling agent and an effective amount of a dry carbon dioxide-generating reagent are adhered to the at least one adhesive layer. The carbon dioxide-generating reagent consists essentially of particles having a diameter of less than 106 microns.