Abstract:
The invention relates to a radiation system for generating electromagnetic radiation. The radiation system includes a pair of electrodes (5) constructed and arranged to generate plasma of a first substance and a pinch (10) in the plasma. The radiation system also includes a plasma recombination surface (13) that is arranged proximate to the pinch, and is configured to neutralize a plurality of plasma particles.
Abstract:
A target material is configured to be used in a source constructed and arranged to generate a radiation beam having a wavelength in a 6.8 nm range. The target material includes a Gd-based composition configured to modify a melting temperature of Gd, or Tb, or a Tb-based composition configured to reduce a melting temperature of Tb.
Abstract:
A patterned beam of radiation is projected onto a substrate. A reflective optical element is used to help forming the radiation beam from radiation emitted from a plasma region of a plasma source. In the plasma source, a plasma current is generated in the plasma region. To reduce damage to the reflective optical element, a magnetic field is applied in the plasma region with at least a component directed along a direction of the plasma current. This axial magnetic field helps limiting the collapse of the Z-pinch region of the plasma. By limiting the collapse, the number of fast ions emitted may be reduced.
Abstract:
Reducing Fast Ions in a Plasma Radiation Source A radiation source with an anode and a cathode to create a discharge in a discharge space between the anode and the cathode is disclosed. A plasma is formed in the radiation source which generates electromagnetic radiation, such as EUV radiation. The radiation source includes a first activation source to direct a first energy pulse onto a first spot in the radiation source near the discharge space to create a main plasma channel which triggers the discharge. The radiation source also has a second activation source to direct a second energy pulse onto a second spot in the radiation source near the discharge space to create an additional plasma channel. By directing the second energy pulse during the same discharge, a shortcutting of the main plasma current is realized which in turn may reduce the amount of fast ions produced.
Abstract:
A lithographic apparatus is disclosed. The apparatus includes an illumination system that provides a beam of radiation, and a support structure that supports a patterning structure. The patterning structure is configured to impart the beam of radiation with a pattern in its cross-section. The apparatus also includes a substrate support that supports a substrate, a projection system that projects the patterned beam onto a target portion of the substrate, and a debris-mitigation system that mitigates debris particles which are formed during use of at least a part of the lithographic apparatus. The debris-mitigation system is arranged to apply a magnetic field so that at least charged debris particles are mitigated.
Abstract:
An apparatus for producing radiation by an electrically operated discharge has a first electrode, a second electrode. and a capacitor bank. The electrodes are configured at a distance from each other which allows plasma ignition. The capacitor bank is electrically connected at a first terminal to the first electrode and at a second terminal to the second electrode, and configured to store a discharge energy. The electrodes and the capacitor bank form an electric circuit. At least the first electrode is formed by an electrically conducting fluid supplied via a first feeding line. The apparatus further has a charger and a first high inductance unit. The charger is connected to at least one of the terminals. The first high inductance unit is provided upstream the first terminal in the first feeding line for electrically decoupling the electric circuit.
Abstract:
A lithographic projection apparatus is provided. The apparatus includes a radiation system for providing a beam of radiation, and a support for supporting a patterning device. The patterning device serves to pattern the beam of radiation according to a desired pattern. The apparatus also includes a substrate table for holding a substrate, a projection system for projecting the patterned beam of radiation onto a target portion of the substrate, and a particle supply unit for supplying getter particles into the beam of radiation in order to act as a getter for contamination particles in the beam of radiation. The getter particles have a diameter of at least about 1 nm.
Abstract:
A radiation source unit is provided that includes an anode and a cathode that are configured and arranged to create a discharge in a substance in a space between said anode and cathode and to form a plasma so as to generate electromagnetic radiation. The substance may comprise xenon, indium, lithium, tin or any suitable material. To improve conversion efficiency, the source unit may be constructed to have a low inductance, and operated with a minimum of plasma. To, for example, improve heat dissipation, a fluid circulation system can be created within the source volume and a wick by using a fluid in both its vapor and liquid states. To, for example, prevent contamination from entering a lithographic projection apparatus, the source unit can be constructed to minimize the production of contamination, and a trap can be employed to capture the contamination without interfering with the emitted radiation.