Abstract:
Photovoltaic devices and techniques for enhancing efficiency thereof are provided. In one aspect, a photovoltaic device is provided. The photovoltaic device comprises a photocell having a first photoactive layer and a second photoactive layer adjacent to the first photoactive layer so as to form a heterojunction between the first photoactive layer and the second photoactive layer; and a plurality of high-aspect-ratio nanostructures on one or more surfaces of the second photoactive layer. The plurality of high-aspect-ratio nanostructures are configured to act as a scattering media for incident light. The plurality of high-aspect-ratio nanostructures can also be configured to create an optical resonance effect in the incident light.
Abstract:
PROBLEM TO BE SOLVED: To provide a method and structure for using a thin gate dielectric substance in a semiconductor device, such as a field effect transistor, etc. SOLUTION: The structure (for example, a field effect transistor) and a method for manufacturing the structure are provided with a substrate having a source region, a drain region, and a channel region provided between the source and drain regions, an insulating layer arranged on the channel region, and a gate electrode arranged on the insulating layer. The insulating layer includes an aluminum nitride-containing layer arranged on the channel region.
Abstract:
PROBLEM TO BE SOLVED: To emit an ultraviolet or blue light which can be converted efficiently into a visible light by applying a photoluminescence, in the form of an organic layer, onto an electroluminescence principally comprising inorganic GaN. SOLUTION: Al is deposited on a sapphire substrate 21 and subjected to a flow of excited nitrogen atoms and molecules in order to grow an AlN nucleus formation layer before Ga and Si are deposited thermally and an Si doped n-type GaN layer 12 is grown. Subsequently, Mg is deposited thermally and an Mg doped p-type GaN layer 14 is grown. Thereafter, an electric contact 16 to the p-type GaN layer 14 is formed by electron beam vacuum deposition of Ni/Au/Al and a part of the device structure is removed by etching thus exposing an n-type doped region 12 for second electric contact 18. Finally, the device is placed in a vacuum chamber and applied with a thin layer 20 of color conversion organic substance, i.e., Alq3 , by thermal deposition.
Abstract:
A method of forming a CMOS structure, and the device produced therefrom, having improved threshold voltage and flatband voltage stability. The inventive method includes the steps of providing a semiconductor substrate having an nFET region and a pFET region; forming a dielectric stack atop the semiconductor substrate comprisisng an insulating interlayer atop a high k dielectric; removing the insulating interlayer from the nFET region without removing the insulating interlayer from the pFET region; and providing at least one gate stack in the pFET region and at least one gate stack in the nFET region. The insulating interlayer can be A1N or A1OxNY. The high k dielectric can be HfO2, hafnium silicate or hafnium silicon oxynitride. The insulating interlayer can be removed from the nFET region by a wet etch including a HC1/H2O2 peroxide solution.
Abstract:
Semiconductor structures, such as, for example, field effect transistors (FETs) and/or metal- oxide-semiconductor capacitor (MOSCAPs), are provided in which the workfunction of a conductive electrode stack is changed by introducing metal impurities into a metal-containing material layer which, together with a conductive electrode, is present in the electrode stack. The choice of metal impurities depends on whether the electrode is to have an n-type workfunction or a p-type workfunction. The present invention also provides a method of fabricating such semiconductor structures. The introduction of metal impurities can be achieved by codeposition of a layer containing both a metal-containing material and workfunction altering metal impurities, forming a stack in which a layer of metal impurities is present between layers of a metal-containing material, or by forming a material layer including the metal impurities above and/or below a metal-containing material and then heating the structure so that the metal impurities are introduced into the metal-containing material.
Abstract:
Electrical contact to the front side of a photovoltaic cell is provided by an array of conductive through-substrate vias, and optionally, an array of conductive blocks located on the front side of the photovoltaic cell. A dielectric liner provides electrical isolation of each conductive through-substrate via from the semiconductor material of the photovoltaic cell. A dielectric layer on the backside of the photovoltaic cell is patterned to cover a contiguous region including all of the conductive through-substrate vias, while exposing a portion of the backside of the photovoltaic cell. A conductive material layer is deposited on the back surface of the photovoltaic cell, and is patterned to form a first conductive wiring structure that electrically connects the conductive through-substrate vias and a second conductive wiring structure that provides electrical connection to the backside of the photovoltaic cell.
Abstract:
A semiconductor structure is provided, which includes multiple sections arranged along a longitudinal axis. Preferably, the semiconductor structure comprises a middle section and two terminal sections located at opposite ends of the middle section. A semiconductor core having a first dopant concentration preferably extends along the longitudinal axis through the middle section and the two terminal sections. A semiconductor shell having a second, higher dopant concentration preferably encircles a portion of the semiconductor core at the two terminal sections, but not at the middle section, of the semiconductor structure. It is particularly preferred that the semiconductor structure is a nanostructure having a cross-sectional dimension of not more than 100 nm.
Abstract:
A semiconductor structure is provided that includes a V t stabilization layer between a gate dielectric and a gate electrode. The V t stabilization layer is capable of stabilizing the structure's threshold voltage and flatband voltage to a targeted value and comprises a nitrided metal oxide, or a nitrogen-free metal oxide, with the provision that when the V t stabilization layer comprises a nitrogen-free metal oxide, at least one of the semiconductor substrate or the gate dielectric includes nitrogen. The present invention also provides a method of fabricating such a structure.
Abstract:
Sensor für feuergefährliche Gase, aufweisend:mindestens eine erste Elektrode;mindestens eine zweite Elektrode, die aus einem Material gebildet ist, das ungleich dem der ersten Elektrode ist;ein inertes Substrat, an dem die mindestens eine erste Elektrode und die mindestens eine zweite Elektrode befestigt sind, wobei die mindestens eine erste Elektrode und die mindestens eine zweite Elektrode jeweils als Streifen eingerichtet sind, die rechtwinklig zueinander auf dem Substrat angeordnet sind; undein katalytisches Material an einer aktiven Reaktionsverbindungsstelle zwischen der mindestens einen ersten Elektrode und der mindestens einen zweiten Elektrode, wo sich die Streifen kreuzen, wobei die aktive Reaktionsverbindungsstelle zwischen der mindestens einen ersten Elektrode und der mindestens einen zweiten Elektrode ein Thermoelement bildet.
Abstract:
Verfahren zum Analysieren von Solarzellenplatten im praktischen Betrieb unter Verwendung eines von einer Infrarotkamera aufgenommenen Infrarotwärmebildes der Solarzellenplatten im Betrieb, wobei das Verfahren die folgenden Schritte umfasst: Aussetzen der Solarzellenplatte der Sonnenstrahlung; Umwandeln des Infrarotwärmebildes in Temperaturdaten; Isolieren einzelner Elemente durch Identifizieren von rechteckigen Bereichen des Infrarotwärmebildes, die Solarzellenplatten in dem Infrarotwärmebild entsprechen; tabellarisches Anordnen der Temperaturdaten für jedes isolierte Element; Ermitteln eines Leistungsfähigkeitsstatus jedes isolierten Elements auf der Grundlage der tabellarisch angeordneten Temperaturdaten; und Erzeugen eines Berichtes über den Leistungsfähigkeitsstatus jedes der isolierten Elemente, wobei ein Wärmemodell auf die Solarzellenplatte angewendet wird, das mindestens eines von einem Wärmewiderstand der Solarzellenplatte, einer Ausrichtung der Solarzellenplatte, einer Windgeschwindigkeit und einer Sonneneinstrahlung berücksichtigt.