Abstract:
The present invention provides merged-mask processes for fabricating micro- machined devices in general and mirrored assemblies for use in optical scanning devices in particular. The process includes (a) providing a substra te having a predetermined thickness; (b) applying a first masking layer on a first portion of the substrate and a second masking layer on a second portio n of the substrate, said second masking layer being at least as thick as the first masking layer; (c) etching a portion of the second masking layer to provide a first exposed portion of the substrate; (d) etching the first exposed portion of the substrate to a first depth; (e) etching the second masking layer to provide a second exposed portion of the substrate; and (f) etching simultaneously the first exposed portion of the substrate to a secon d depth and the second exposed portion of the substrate to a first depth. The process further comprises patterning the first masking layer before applying the second masking layer to provide the second portion of the substrate for etching and etching the first masking layer to expose the second portion of the substrate. The first and second masking layers are applied prior to etching the substrate.
Abstract:
An accelerometer (305) for measuring seismic data. The accelerometer (305) includes an integrated vent hole for use during a vacuum sealing process and a balanced metal pattern for reducing cap wafer bowing. The accelerometer (305) also includes a top cap press frame recess (405) and a bottom cap press frame recess (420) for isolating bonding pressures to specified regions of the accelerometer (305). The accelerometer (305) is vacuum-sealed and includes a balanced metal pattern (730) to prevent degradation of the performance of the accelerometer (305). A dicing process is performed on the accelerometer (305) to isolate the electrical leads of the accelerometer (305). The accelerometer (305) further includes overshock protection bumpers (720) and patterned metal electrodes to reduce stiction during the operation of the accelerometer (305).
Abstract:
An accelerometer (305) for measuring seismic data. The accelerometer (305) includes an integrated vent hole for use during a vacuum sealing process and a balanced metal pattern for reducing cap wafer bowing. The accelerometer (305) also includes a top cap press frame recess (405) and a bottom cap press frame recess (420) for isolating bonding pressures to specified regions of the accelerometer (305). The accelerometer (305) is vacuum-sealed and includes a balanced metal pattern (730) to prevent degradation of the performance of the accelerometer (305). A dicing process is performed on the accelerometer (305) to isolate the electrical leads of the accelerometer (305). The accelerometer (305) further includes overshock protection bumpers (720) and patterned metal electrodes to reduce stiction during the operation of the accelerometer (305).
Abstract:
A system for resiliently attaching a mass to a package includes a mass (104) , a housing (102), resilient couplings (108) for resiliently attaching the mas s to the housing.
Abstract:
The present invention provides merged-mask processes for fabricating micro-machined devices in general and mirrored assemblies for use in optical scanning devices in particular. The process includes (a) providing a substrate having a predetermined thickness; (b) applying a first masking layer on a first portion of the substrate and a second masking layer on a second portion of the substrate, said second masking layer being at least as thick as the first masking layer; (c) etching a portion of the second masking layer to provide a first exposed portion of the substrate; (d) etching the first exposed portion of the substrate to a first depth; (e) etching the second masking layer to provide a second exposed portion of the substrate; and (f) etching simultaneously the first exposed portion of the substrate to a second depth and the second exposed portion of the substrate to a first depth. The process further comprises patterning the first masking layer before applying the second masking layer to provide the second portion of the substrate for etching and etching the first masking layer to expose the second portion of the substrate. The first and second masking layers are applied prior to etching the substrate.
Abstract:
An accelerometer (305) for measuring seismic data. The accelerometer (305) includes an integrated vent hole for use during a vacuum sealing process and a balanced metal pattern for reducing cap wafer bowing. The accelerometer (305) also includes a top cap press frame recess (405) and a bottom cap press frame recess (420) for isolating bonding pressures to specified regions of the accelerometer (305). The accelerometer (305) is vacuum-sealed and includes a balanced metal pattern (730) to prevent degradation of the performance of the accelerometer (305). A dicing process is performed on the accelerometer (305) to isolate the electrical leads of the accelerometer (305). The accelerometer (305) further includes overshock protection bumpers (720) and patterned metal electrodes to reduce stiction during the operation of the accelerometer (305).
Abstract:
A micro machined structure includes one or more temporary bridges for temporarily coupling the micro machined structure to a support structure.