Self-rectifying resistive memory and fabrication method thereof

    公开(公告)号:US11641787B2

    公开(公告)日:2023-05-02

    申请号:US16767091

    申请日:2018-03-28

    Abstract: The present disclosure provides a self-rectifying resistive memory, including: a lower electrode; a resistive material layer formed on the lower electrode and used as a storage medium; a barrier layer formed on the resistive material layer and using a semiconductor material or an insulating material; and an upper electrode formed on the barrier layer to achieve Schottky contact with the material of the barrier layer; wherein, the Schottky contact between the upper electrode and the material of the barrier layer is used to realize self-rectification of the self-rectifying resistive memory. Thus, no additional gate transistor or diode is required as the gate unit. In addition, because the device has self-rectifying characteristics, it is capable of suppressing read crosstalk in the cross-array.

    Self-gated RRAM cell and method for manufacturing the same

    公开(公告)号:US10608177B2

    公开(公告)日:2020-03-31

    申请号:US15525200

    申请日:2014-12-26

    Abstract: The present disclosure discloses a self-gated RRAM cell and a manufacturing method thereof; which belong to the field of microelectronic technology. The self-gated RRAM cell comprises: a stacked structure containing multiple layers of conductive lower electrodes; a vertical trench formed by etching the stacked structure; a M8XY6 gated layer formed on an inner wall and a bottom of the vertical trench; a resistance transition layer formed on a surface of the M8XY6, gated layer; and a conductive upper electrode formed on a surface of the resistance transition layer, the vertical trench being filled with the conductive upper electrode. The present disclosure is implemented on a basis of using the self-gated RRAM as a memory cell. It may not depend on a gated transistor and a diode, but relies on a non-linear variation characteristic of resistance of its own varied with voltage to achieve a self-gated function, which has a simple structure, easy integration, high density and low cost, capable of suppressing a reading crosstalk phenomenon in a cross array structure; and is also adapted for a planar stacked cross array structure and a vertical cross array structure, achieving 3D storage with a high density.

    Nonvolatile resistive switching memory device and manufacturing method thereof

    公开(公告)号:US10134983B2

    公开(公告)日:2018-11-20

    申请号:US15546212

    申请日:2015-05-14

    Abstract: A nonvolatile resistive switching memory, comprising an inert metal electrode, a resistive switching functional layer, and an easily oxidizable metal electrode, and characterized in that: a graphene barrier layer is inserted between the inert metal electrode and the resistive switching functional layer, which is capable of preventing the easily oxidizable metal ions from migrating into the inert metal electrode through the resistive switching functional layer under the action of electric field during the programming of the device. The manufacturing method therefore comprises adding a monolayer or multilayer graphene thin film between the inert electrode and the solid-state electrolyte resistive switching functional layer which services as a metal ion barrier layer to stop electrically-conductive metal filaments formed in the resistive switching layer from diffusing into the inert electrode layer during a RRAM device programming process, eliminating erroneous programming phenomenon occurring during the erasing process, improving device reliability.

    Resistance random access memory and method for fabricating the same

    公开(公告)号:US11245074B2

    公开(公告)日:2022-02-08

    申请号:US16616785

    申请日:2017-05-26

    Abstract: A RRAM and a method for fabricating the same, wherein the RRAM comprises: a bottom electrode; an oxide layer containing a bottom electrode metal, disposed on the bottom electrode; a resistance-switching layer, disposed on the oxide layer containing a bottom electrode metal, wherein the resistance-switching layer material is a nitrogen-containing tantalum oxide; an inserting layer, disposed on the resistance-switching layer, wherein the inserting layer material comprises a metal or a semiconductor; a top electrode, disposed on the inserting layer. By providing the to resistance-switching layer with a nitrogen-containing tantalum oxide, compared with Ta2O5, the RRAM of the present disclosure has a low activation voltage and a high on-off ratio, and can enhance the control capability over the device resistance by the number of oxygen vacancies.

Patent Agency Ranking