Abstract:
In a wireless communication system including an access point and at least one wireless transmit/receive unit (WTRU), a method for adaptive radio resource management begins by examining a frame error rate value of a WTRU. Then, a channel utilization value of the WTRU and a current data rate of the WTRU are examined. System parameters for the WTRU are adjusted based on the examined variables.
Abstract:
A method and wireless communication system for requesting and obtaining transmit power control (TPC) information. The system includes at least one access point (AP) and at least one wireless transmit/receive unit (WTRU). When the AP decides to adapt the transmit power level of the WTRU, the AP transmits a TPC request frame to the WTRU. In response to receiving the TPC request frame, the WTRU performs one or more physical measurements and sends a TPC report frame back to the AP.
Abstract:
A method for managing quality of service (QoS) in a wireless local area network begins by receiving a traffic flow (302). The traffic flow is mapped to a traffic class (TC), based on QoS requirements of the traffic flow (304). A transmission budget of an access class (AC) is calculated, each AC including at least one TC (306). A determination is made whether the traffic flow can be admitted, by calculating whether the transmission budget can support the traffic flow (308). If the traffic flow is admitted, the parameters of the TC are adjusted and collisions in the TC between existing traffic flows and the newly admitted traffic flow are managed (314).
Abstract:
A method and system for mapping quality of service requirements between various types of wireless communication systems is disclosed. The mapping is performed according to the type of systems across which the mapping is being provided.
Abstract:
A temporary (temp) dedicated channel (DCH) is used to support communications. The temp-DCH channel is a channel that is assigned to a user having a set duration. After the duration expires, the channel is automatically released to the user. Embodiments of the invention relate to establishing the temp-DCH channel, determining the data rate and duration of the channel. Other embodiments relate to establishing back-to-back temp-DCH channels and the implementation details of these embodiments. Additionally, one embodiment relates to adding a start/stop function to the medium access controller which can be used in conjunction with temp-DCH as well as other applications.
Abstract:
The present invention is directed to methods and wireless communication devices that are configured to enhance communication capacity in a wireless network. In one aspect of the invention various scheduling processes and schedulers (40) for the transmissions of data packets (46) are disclosed. In another aspect of the invention, the selection of appropriate transmission rates to advertise by a common unit which provides wireless service to different types of wireless transmit receive units WTRUs is addressed.
Abstract:
A startup process of an access point (AP) includes a discovery phase and an announcement phase. During the discovery phase, the AP detects neighboring APs from its own extended service set (ESS), neighboring APs from different ESSs, and external sources of interference. During the announcement phase, the AP transmits its beacon signals at maximum power in order to accelerate recognition by neighboring APs running the discovery phase. An automatic initialization channel selection process of an AP scans channels the AP will use to communicate. Information of each scanned channel is recorded and a best performance channel is determined for use by the AP.
Abstract:
A method and system is disclosed for providing intelligent remote access to wireless transmit/receive units (WTRUs). A translator is provided in base stations so that system controllers may issue application level network management protocol messages to base stations. The messages are transmitted by the translator to a medium access control (MAC) messaging protocol and forwarded to WTRUs. Information provided by WTRUs to base stations is translated from a MAC protocol to an application level network management protocol so that the information may be accessed by system controllers using application level network management protocols.