Abstract:
A method for analyzing a fluid contained within a machine, comprising the steps of providing a machine system (100) including a passage (104) for containing a fluid; placing a sensor (106) including a mechanical resonator in the passage; operating the resonator to have a portion thereof translate through the fluid; and monitoring the response of the resonator to the fluid in the passage. One specific sensor includes a tuning fork resonator.
Abstract:
A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a thickness shear mode resonator or a tuning fork resonator, connected to a measurement circuit. The measurement circuit provides a variable frequency input signal to the tuning fork, causing the mechanical resonator to oscillate. To test the properties of a liquid composition, the mechanical resonator is placed inside a sample well containing a small amount of the liquid. The input signal is then sent to the mechanical resonator and swept over a selected frequency range, preferably less than 1 MHz to prevent the liquid being tested from exhibiting gel-like characteristics and causing false readings. The mechanical resonator's response over the frequency range depends on various characteristics of the liquid being tested, such as the temperature, viscosity, and other physical properties. Particular mechanical resonators, such as tuning fork resonators, can also be used to measure a liquid composition's electrical properties, such as the dielectric constant and conductivity, because the tuning fork's structure allows a high degree of electrical coupling between the tuning fork and the surrounding liquid. The mechanical resonator can be covered with a coating to impart additional special detection properties to the resonator, and multiple resonators can be attached together as a single sensor to obtain multiple frequency responses. The invention is particularly suitable for combinatorial chemistry applications, which require rapid analysis of chemical properties for screening.
Abstract:
Rapid characterization and screening of polymer samples to determine average molecular weight, molecular weight distribution and other properties is disclosed. Rapid flow characterization systems and methods, including liquid chromatography and flow-injection analysis systems and methods are preferably employed. High throughput, automated sampling systems and methods, hightemperature characterization systems and methods, and rapid, indirect calibration compositions and methods are also disclosed. The described methods, systems, and devices have primary applications in combinatorial polymer research and in industrial process control.
Abstract:
Fluid sensor methods and systems adapted for monitoring and/or controlling distillation operations in fluidic systems, such as batch distillation operations or continuous distillation operations, are disclosed. Preferred embodiments are directed to process monitoring and/or process control for unit operations involving endpoint determination of a distillation, for example, as applied to a liquid-component-switching operation (e.g., a solvent switching operation), a liquid-liquid separation operation, a solute concentration operation, a dispersed-phase concentration operation, among others.
Abstract:
In the methods, systems and apparatus of the present invention, a property of a fluid in a fluidic system is monitored using a sensor interfaced with the fluidic system. In some embodiments, the interfaced sensor is formed from and includes at least one sensor subassembly interfaced with an installed unit that is either a sensor or another sensor subassembly. Likewise, the systems and apparatus of the present invention comprise a sensor or a sensor subassembly. In each case, the sensor is a flexural resonator sensor. In preferred embodiments, a flexural resonator sensor comprises a flexural resonator sensing element having a sensing surface for contacting the fluid being sensed. In operation during a sensing period, the sensing surface of a flexural resonator displaces or is displaced by at least a portion of the fluid being sensed.
Abstract:
Rapid characterization and screening of polymer samples to determine average molecular weight, molecular weight distribution and other properties is disclosed. Rapid flow characterization systems and methods, including liquid chromatography and flow-injection analysis systems and methods are preferably employed. High throughput, automated sampling systems and methods, high-temperature characterization systems and methods, and rapid, indirect calibration compositions and methods are also disclosed. The described methods, systems, and devices have primary applications in combinatorial polymer research and in industrial process control.
Abstract:
A method and apparatus for measuring properties of a liquid composition includes a mechanical resonator, such as a thickness shear mode resonator or a tuning fork resonator, connected to a measurement circuit. The measurement circuit provides a variable frequency input signal to the tuning fork, causing the mechanical resonator to oscillate. To test the properties of a liquid composition, the mechanical resonator is placed inside a sample well containing a small amount of the liquid. The input signal is then sent to the mechanical resonator and swept over a selected frequency range, preferably less than 1 MHz to prevent the liquid being tested from exhibiting gel-like characteristics and causing false readings. The mechanical resonator's response over the frequency range depends on various characteristics of the liquid being tested, such as the temperature, viscosity, and other physical properties. Particular mechanical resonators, such as tuning fork resonators, can also be used to measure a liquid composition's electrical properties, such as the dielectric constant and conductivity, because the tuning fork's structure allows a high degree of electrical coupling between the tuning fork and the surrounding liquid. The mechanical resonator can be covered with a coating to impart additional special detection properties to the resonator, and multiple resonators can be attached together as a single sensor to obtain multiple frequency responses. The invention is particularly suitable for combinatorial chemistry applications, which require rapid analysis of chemical properties for screening.
Abstract:
A modular materials characterization apparatus includes a sensor array (10) disposed on a substrate (16), with a standardized array and contact pad (14) format; electronic test and measurement apparatus (54) for sending electrical signals to and receiving electrical signals from the sensor array (10); an apparatus for making electrical contact (50) to the sensors in the standardized array format; an apparatus for routing signals (129) between one or more selected sensors and the electronic test and measurement apparatus and a computer (52) with a computer program recorded therein for controlling the operation of the apparatus. The sensor array (10) is preferably arranged in a standardized format used in combinatorial chemistry applications for rapid deposition of sample materials on the sensor array. An interconnection apparatus (40) and sensor array (10) and contact pad (32) allow measurement of many different material properties by using substrates carrying different sensor types.
Abstract:
Fluid monitoring methods, sensors and systems are disclosed. Preferred embodiments comprise two or more mechanical resonators, preferably two or more flexural resonators configured for sensing, monitoring or evaluating one or more fluids at multiple positions within one or more fluidic systems. In the methods, sensors and systems of the invention, signals generated in response to stimulation of the mechanical resonators are communicated by multiplexing over a common communication path, and then deconvoluted with respect to the position of the resonators.