Abstract in simplified Chinese:一种具有绝缘闸成型在槽中之半导体功率设备之制造方法,一槽成型于一半导体本体内;该槽之槽壁及底部被第一绝缘材料层所覆盖;该槽充满了第二绝缘材料层;该第一,第二绝缘材料层经局部,同步及控制蚀刻如具有同样蚀刻率之绝缘材料所蚀刻。一闸极氧化层,其具有小于第一绝缘材料层之厚度且沉淀于该槽之槽壁。一传导性闸极区域,其成型于该槽内,本体区域及源极区域成型于该半导体本体内,并与该闸极区域相绝缘。因此,该闸极区域只延伸于第一,第二绝缘材料层其它部份之顶端。
Abstract in simplified Chinese:本发明系描述一种适合于充电一电池之设备,该设备包括至少一第一晶体管(M10)及一第二晶体管(M20)。该等晶体管(M10,M20)系连接至一输入电压(Vin)且具有输出端;该第一晶体管(M10)之输出端系连接至该电池(LOAD)。该设备包括用于驱动该等晶体管(M10,M20)之一电路(100),且该驱动电路(100)包括复数个第一设备(CA1),适合于在该电池(LOAD)之充电阶段期间,调节该电池中之电流(Iout)。该等第一设备(CA1)适合于在该电池(LOAD)之充电阶段期间,使该等晶体管(M10,M20)输出端上之电压保持相等。
Abstract:
A MEMS device (17) formed by a body (2); a cavity (25), extending above the body; mobile and fixed structures (18, 19) extending above the cavity and physically connected to the body via anchoring regions (16); and electrical-connection regions (10a, 10b, 10c), extending between the body (2) and the anchoring regions (16) and electrically connected to the mobile and fixed structures. The electrical-connection regions (10a, 10b, 10c) are formed by a conductive multilayer including a first semiconductor material layer (5), a composite layer (6) of a binary compound of the semiconductor material and of a transition metal, and a second semiconductor material layer (7).
Abstract:
An electronic device includes a silicon substrate (2) having a first side and a second side. A structural layer of gallium nitride (6) is formed over the first side of the silicon substrate and includes an active area of the electronic device. A transition layer (8) is provided between the substrate and the structural layer. The transition layer electrically and/or thermally insulated the substrate and the structural layer from one another. A via hole (20) made of a conductive material extends through the structural layer and the transition layer. The via hole is electrically and/or thermally connected to the active area of the electronic device and to the substrate.
Abstract:
The present invention relates to a method and an apparatus for manufacturing lead frames. According to the present invention, a coating layer (120) is formed on one or more predefined portions (A, B, C, D, E, F, G, H) of the surface (110s) of the substrate (100) of the lead frame (100) by delimiting the predefined portions (A, B, C, D, E, F, G, H) by means of screen printing. The employment of screen printing allows the obtainment of large amounts of lead frames with excellent electronic and structural properties in a quick and cost-effective way.
Abstract:
4D data ultrasound imaging system (100) comprising a matrix (10) of transducer elements (3) suitable for transmitting and for receiving ultrasound signals, said transducer elements (3) being divided into sub-matrixes (21) suitable for receiving in a delayed way a same acoustic signal, a plurality of reception channels (22) with one of said reception channels (22) being associated with one of said transducer elements (3), a beamformer device (109) comprising a plurality of storage cells (111) arranged in re-phasing matrixes (112), each re-phasing matrix (1 12) being associated with a corresponding sub-matrix (21) with each row (Ri) associated with one of said transducer elements (3), said storage cells (111) comprising an input storage stage (In) that is selectively associated with a row (Ri) and a reading output stage (Out) that is selectively associated with a buffer (16); each storage cell (111) that belongs to a same column (Coi) has the input stage (In) that is dynamically activated in sequential times with respect to another storage cell (11 1) of the same column (Coi) for storing the same delayed acoustic signal, said storage cells (1 11) that belong to the same column (Coi) have the output stage (Out) that is simultaneously activated.
Abstract:
An integrated circuit controls a switch of a switching current regulator. The current regulator comprises primary and secondary windings where a first and a second current flow, respectively. The switch is adapted to initiate or interrupt the circulation of the first current in the primary winding. The control integrated circuit comprises a comparator configured to compare a first signal representative of said first current to a second signal and a divider circuit configured to generate said second signal as a ratio of a third signal, proportional to a voltage on the primary winding, with a voltage on a capacitor. The capacitor is charged by a further current controlled by the third signal when the second current is different from zero and is discharged through resistor when the value of said second current is substantially zero.
Abstract:
An integrated control circuit of a switch is described, which is adapted to open or close a current path; said integrated circuit includes a comparator to compare a first signal with a second signal representative of the current flowing through said current path. The comparator outputs a third variable signal between a low logic level and a high logic level according to whether said second signal is lower than said first signal or vice versa; the integrated circuit has a driver to generate a signal to drive said switch in response to the third signal, and is configured to detect a spike on the leading edge of said second signal and to blank said third signal for a first blanking time period which depends on a turn-on delay of said switch and a second blanking period which depends on the duration of said spike on the leading edge of said second signal.
Abstract:
A transmission channel (1) is described of the type comprising at least one high voltage buffer block (4) comprising buffer transistors (MB1, MB2, MB3, MB4) and respective buffer diodes (DB1, DB2, DB3, DB4), being inserted between respective voltage references (HVPO, HVP1, HVMO, HVM1), these buffer transistors (MB1, MB2, MB3, MB4) being also connected to a clamping block (5), in turn comprising clamping transistors (MC1, MC2) connected to at least one output terminal (HVout) of this transmission channel through diodes (DC1, DC2) connected to prevent the body diodes of the clamping transistors (MC1, MC2) from conducting. Advantageously according to the invention, the transmission channel (1) comprises at least one reset circuit (20) comprising diodes (DME1, DME2, DME3, DME4) and being inserted between circuit nodes (XME1, XME2, XME3, XME4, XC1, XC2) of the high voltage buffer block (4) and of the clamping block (5), these circuit nodes (XME1, XME2, XME3, XME4, XC1, XC2) being in correspondence with conduction terminals of the transistors (MB l, MB2, MB3, MB4; MC1, MC2) comprised into the high voltage buffer block (4) and into the clamping block (5).
Abstract:
A MEMS transducer (1) has a micromechanical sensing structure (10) and a package (46). The package (46) is provided with a substrate (45), carrying first electrical-connection elements (47), and with a lid (25), coupled to the substrate to define an internal cavity (24), in which the micromechanical sensing structure (10) is housed. The lid (25) is formed by: a cap layer (20) having a first surface (20a) and a second surface (20b), set opposite to one another, the first surface (20a) defining an external face of the package (46) and the second surface (20b) facing the substrate (45) inside the package (46); and a wall structure (21), set between the cap layer (20) and the substrate (45), and having a coupling face (21a) coupled to the substrate (45). At least a first electrical component (10, 11) is coupled to the second surface (20b) of the cap layer (20), inside the package (46), and the coupling face (21a) of the wall structure (21) carries second electrical-connection elements (30), electrically connected to the first electrical component (10, 11) and to the first electrical-connection elements (47).