Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
A microelectronic device comprises local digit line structures, global digit line structures, source line structures, sense transistors, read transistors, and write transistors. The local digit line structures are coupled to strings of memory cells. The global digit line structures overlie the local digit line structures. The source line structures are interposed between the local digit line structures and the global digit line structures. The sense transistors are interposed between the source line structures and the global digit line structures, and are coupled to the local digit line structures and the source line structures. The read transistors are interposed between and are coupled to the sense transistors and the global digit line structures. The write transistors are interposed between and are coupled to the global digit line structures and the local digit line structures. Additional microelectronic devices, memory devices, and electronic systems are also described.
Abstract:
An electrical circuit comprising at least two negative capacitance insulators connected in series, one of the two negative capacitance insulators is biased to generate a negative capacitance. One of the negative capacitance insulators may include an air-gap which is part of a nanoelectromechnical system (NEMS) device and the second negative capacitance insulator includes a ferroelectric material. Both of the negative capacitance insulators may be located between the channel and gate of a field effect transistor. The NEMS device may include a movable electrode, a dielectric and a fixed electrode and arranged so that the movable electrode is attached to at least two points and spaced apart from the dielectric and fixed electrode, and the ferroelectric capacitor is electrically connected to either of the electrodes.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
A process for manufacturing an interaction system of a microelectromechanical type for a storage medium, the interaction system provided with a supporting element and an interaction element carried by the supporting element, envisages the steps of: providing a wafer of semiconductor material having a substrate with a first type of conductivity and a top surface; forming a first interaction region having a second type of conductivity, opposite to the first type of conductivity, in a surface portion of the substrate in the proximity of the top surface; and carrying out an electrochemical etch of the substrate starting from the top surface, the etching being selective with respect to the second type of conductivity, so as to remove the surface portion of the substrate and separate the first interaction region from the substrate, thus forming the supporting element.
Abstract:
The present invention discloses a method for generating nano patterns upon material surfaces. The method for generating nano patterns upon material surfaces comprises the following steps: providing a thin film capable of controlling lattice directions, applying a nanoindentation action to the thin film to generate an indentation at a specific position on the thin film. At least one hillock is then generated in a specific direction to generate a pattern and to be applied to a data storage system.
Abstract:
High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.
Abstract:
The present invention relates to a laminated nanostructure including magnetic nanoparticles having a perpendicular magnetic anisotropy, to a method for producing same, and to a magnetic storage medium using same. More particularly, the present invention relates to a laminated nanostructure which is produced using a porous thin film as a template, and by depositing magnetic nanoparticles in the pores of the thin film through an electrodeposition process. As a result, the gaps between nanoparticles are uniform, the sizes of nanoparticles are small, and nanoparticles are free from a polarity interaction therebetween, thus enabling each of the nanoparticles to have its own polarity, and to achieve perpendicular magnetic properties.