Abstract:
THE INVENTION IS CONCERNED WITH A METHOD OF MAKING GAS DIFFUUSION MEMBRANES. THE PORES ADJACENT THE SURFACE OF A POROUS PERMEABLE CARRIER MEMBER ARE FILLED WITH A MATERIAL, LATER TO BE REMOVED, A DIFFUSION MEMBER IS APPLIED TO THAT SURFACE, AND THE FILLER MATERIAL IS THEN REMOVED. IN ANOTHER EMBODIMENT A DIFFUSION MEMBER IS APPLIED TIO A GLASS CARRIER MEMBER WHICH IS PORE-FREE, AND THE GLASS IS THEN MADE POROUS BY HEAT TREATMENT AND SELECTIVE DISSOLUTION.
Abstract:
A mass spectrometer is connected to a vacuum system which includes a vacuum-pumping system and which is communicated with the vessel under test exposed to a suitable probe gas. The vacuum-pumping system consists of a first stage in the form of a mechanical roughing pump for reducing the system pressure to roughing pressure, and a second stage in the form of a highvacuum pump which comprises an electronic getter-ion (sublimation) pump for pumping the chemically active nonnoble gases in combination with a Penning discharge chamber which houses discharge cathodes exposed to the deposit of the getter material from the getter-ion pump for pumping the noble gas.
Abstract:
In einem Verfahren zur Ermittlung wenigstens eines physikalischen Parameters ist eine Sensoreinheit vorgesehen, die durch mindestens eine periodische Anregung (1.4) erregt wird, wobei die Sensoreinheit wenigstens einen Detektionsbereich aufweist, in dem Änderungen des Parameters im Umfeld der Sensoreinheit zu einem Ausgangssignal (1.7) der Sensoreinheit führen. Die Sensoreinheit ist so beschaltet ist, dass am Ausgang der Sensoreinheit ohne Änderungen des Parameters im Detektionsbereich das Ausgangssignal (1.7) ein Nullsignal oder ein nahezu Nullsignal ist, während bei Änderungen des Parameters im Detektionsbereich das Ausgangssignal (1.7) ein Signal ungleich Null ist, das eine bestimmte Amplitude und Phase aufweist. In einem geschlossenen Regelkreis wird mit einem Regelsignal das Signal ungleich Null im Empfangspfad auch bei Vorhandensein von Änderungen des Parameters im Detektionsbereich zur Erzielung eines ausgeregelten Zustands zu Null ausgeregelt. Das Regelsignal wird ausgewertet, um den physikalischen Parameter zu ermitteln. Das Ausgangssignal (1.7) der Sensoreinheit wird im Wesentlichen auf die Grundwelle der Anregung (1.4) reduziert und mittels wenigstens einer Pulsweitenmodulation wird das Ausgangssignal (1.7) im gesamten Phasenraum zu Null geregelt. Dadurch, dass die wenigstens eine Pulsweitenmodulation selbst je ein Korrektursignal mit variabler Pulsbreite und ggf. variabler Phase erzeugt, das dann zum Ausgangssignal (1.7) der Sensoreinheit addiert wird und dadurch das Ausgangssignal im gesamten Phasenraum zu Null regelt, wobei die Pulsbreite des Korrektursignals und/oder die Phase des Korrektursignals durch die Abweichungen des Ausgangssignals (1.7) von Null bestimmt wird, wird ein temperaturstabiles, volldigitales Messsystem geschaffen.
Abstract:
Aspects of the present disclosure include a computer-implemented method for identifying an operating temperature of an integrated circuit (IC), the method including using a computing device for: applying a test voltage to a test circuit embedded within the IC, the test circuit including a phase shift memory (PSM) element therein, wherein the PSM element crystallizes at a crystallization temperature from an amorphous phase having a first electrical resistance into a crystalline phase having a second electrical resistance, the second electrical resistance being less than the first electrical resistance; and identifying the IC as having operated above the crystallization temperature in response to a resistance of the test circuit at the test voltage being outside of the target operating range.
Abstract:
In a method for determining at least one physical parameter, a sensor unit which is activated by at least one periodic excitation (1.4) is provided, wherein the sensor unit has at least one detection region in which changes of the parameter in the surroundings of the sensor unit lead to output signal (1.7) from the sensor unit. The sensor unit is wired such that if there are no changes of the parameter in the detection region the output signal (1.7) is a zero signal or virtually a zero signal at the output of the sensor unit, whereas if there are changes of the parameter in the detection region the output signal (1.7) is a signal that is not zero and has a specific amplitude and phase. In a closed control loop, the non-zero signal in the receive path is adjusted to zero using a control signal to achieve an adjusted state even in the presence of changes of the parameter in the detection region. The control signal is evaluated in order to determine the physical parameter. The output signal (1.7) from the sensor unit is reduced substantially to the fundamental wave of the excitation (1.4) and the output signal (1.7) is controlled to zero in the entire phase space by means of at least one pulse width modulation. A temperature-stable, fully digital measuring system is provided as a result of the fact that the at least one pulse width modulation itself generates a correction signal with a variable pulse width and possibly a variable phase which is then added to the output signal (1.7) from the sensor unit and the output signal is thereby controlled to zero in the entire phase space, wherein the pulse width of the correction signal and/or the phase of the correction signal is/are determined by the deviations of the output signal (1.7) from zero.
Abstract:
A Long Lifetime Cold Cathode Ionization Vacuum Gauge Design with an extended anode electrode having an axially directed tip, a cathode electrode, and a baffle structure. The axially directed tip of the anode electrode can have a rounded exterior with a diameter at least 10% greater than the diameter of the anode electrode.
Abstract:
Apparatus for ionizing gases at very low pressures comprising inner and outer electrodes wherein the inner electrode is substantially circular in cross section and the outer electrode surrounding the inner electrode may be other than a figure of revolution or may be eccentrically positioned with respect to the inner electrode which inner electrode is less in length than two times the length of the surrounding outer electrode and is spaced therefrom a distance which is greater than the diameter of the inner electrode for a distance of not less than two-thirds the length of the surrounding outer electrode.
Abstract:
A combined pumping system comprises a getter pump and an ion pump. The getter and ion pumps are mounted on a same flange and are arranged on the same side of the flange at two different points thereof. The flange can be mounted to a vacuum chamber, such that the combined pumping system evacuates the vacuum chamber.
Abstract:
A combined pumping system comprises a getter pump and an ion pump. The getter and ion pumps are mounted on a same flange and are arranged on the same side of the flange at two different points thereof. The flange can be mounted to a vacuum chamber, such that the combined pumping system evacuates the vacuum chamber.
Abstract:
A combined pumping system (10) comprises a getter pump (12) and an ion pump (13). The getter and ion pumps (12, 13) are mounted on a same flange (11) and are arranged on the same side of said flange (11) at two different points thereof.