Abstract:
An inductor component is disposed outside a multilayer substrate, and thus a directional coupler defined by an internal wiring electrode and a coil electrode within the inductor component that is mounted on a pair of land electrodes, the multilayer substrate significantly reduces or prevents interference with other high-frequency circuit elements disposed in or on the multilayer substrate. Additionally, if a plurality of inductor components having different inductor characteristics are prepared, a high-frequency module including the multilayer substrate capable of defining the directional coupler whose characteristics are able to adjusted with ease is able to be provided simply by selecting the desired inductor component from the inductor components and replacing that inductor component.
Abstract:
A printed circuit board has a first solder land, a second solder land, and a signal line pattern. The first solder land is configured to be soldered with an electronic part. The second solder land is configured to accumulate solder, the second solder land being disposed on a downstream side of the first solder land as viewed in a direction in which the printed circuit is carried. The signal line pattern includes an exposed part that is not covered with a resist, the exposed part being disposed between the solder land and the solder bridge prevention land.
Abstract:
A printed circuit board unit usable with a computer device includes a main board on which a first component and a second component are mounted on an upper surface, and a routing unit mounted on at least one of the upper surface and a lower surface of the main board and including a sub-wire forming at least part of a wire to transmit a data between the first component and the second component.
Abstract:
A printed circuit board has a first solder land, a second solder land, and a signal line pattern. The first solder land is configured to be soldered with an electronic part. The second solder land is configured to accumulate solder, the second solder land being disposed on a downstream side of the first solder land as viewed in a direction in which the printed circuit is carried. The signal line pattern includes an exposed part that is not covered with a resist, the exposed part being disposed between the solder land and the solder bridge prevention land.
Abstract:
A printed circuit board has a first solder land, a second solder land, and a signal line pattern. The first solder land is configured to be soldered with an electronic part. The second solder land is configured to accumulate solder, the second solder land being disposed on a downstream side of the first solder land as viewed in a direction in which the printed circuit is carried. The signal line pattern includes an exposed part that is not covered with a resist, the exposed part being disposed between the solder land and the solder bridge prevention land.
Abstract:
A circuit board circuit apparatus and a light source apparatus including a substrate, a circuit layer, and at least one electronic component are disclosed. The circuit layer is formed on a surface of the substrate. The circuit layer includes a first circuit and a second circuit which are coplanar-disposed. The at least one electronic component is disposed on the circuit layer and connected with the circuit layer. Each electronic component has a first contact and a second contact. At least a part of the second circuit is disposed between the at least one electronic component and the first circuit. The at least one electronic component crosses over the second circuit, so that the second circuit penetrates through the bottom of the electronic component between the first contact and the second contact.
Abstract:
Provided is a signal transfer circuit which uses a low cost circuit board with a high packing density but is capable of reducing a crosstalk noise between signal lines and also reducing a reflection noise due to a stub. A signal transfer circuit of the present invention is configured such that lead terminals of electronic components and through-hole vias are connected to each other by surface wirings, respectively, to allow no branching from the middle of the through-hole vias. Further, first wirings connecting a first electronic component are each arranged between a corresponding pair of second wirings connecting a second electronic component, and signals are transmitted through the first wirings and the second wirings by interleaved transmission.
Abstract:
In a high-frequency module, an antenna device is disposed on a first principal surface of a second substrate, a first principal surface of a first substrate and a second principal surface of the second substrate face each other and are connected to each other by conductive connecting members, electronic components including an IC chip are mounted on the first principal surface of the first substrate, ground electrodes are disposed on the first and second substrates, the conductive connecting members are connected to a ground potential, and thus the IC chip is surrounded by the ground electrodes of the first and second substrates and the conductive connecting members.
Abstract:
A feedthrough capacitor has: a capacitor element body of a substantially rectangular parallelepiped shape in which a plurality of insulator layers are laminated together; a signal internal electrode arranged in the capacitor element body; a ground internal electrode arranged in the capacitor element body and opposed to the signal internal electrode; signal terminal electrodes connected to the signal internal electrode; and a ground terminal electrode connected to the ground internal electrode. The signal terminal electrodes are provided on first and second end faces, respectively, in a longitudinal direction of the capacitor element body. The ground terminal electrode is provided on at least one side face out of first to fourth side faces extending along the longitudinal direction of the capacitor element body. Furthermore, the ground terminal electrode is located nearer at least one end face out of the first end face and the second end face.
Abstract:
A method for manufacturing a printed circuit board. The method includes: preparing a printed wiring board, the printed wiring board comprising through holes and a plurality of electrode pads; coating surfaces of the plurality of electrode pads and surfaces of the through holes on an one side of the printed wiring board with a bonding material; mounting a semiconductor package on the printed wiring board such that a plurality of bumps on a surface of the semiconductor package corresponds to the plurality of electrode pads; bonding the bumps to the electrode pads by heating the printed wiring board on which the semiconductor package is mounted; and filling a space between the semiconductor package and the printed wiring board with a filler material.