Synthetic quartz glass for optical member and its production method
    221.
    发明授权
    Synthetic quartz glass for optical member and its production method 有权
    光学构件合成石英玻璃及其制作方法

    公开(公告)号:US07514382B2

    公开(公告)日:2009-04-07

    申请号:US11398669

    申请日:2006-04-06

    Abstract: A synthetic quartz glass for an optical member which is free from compaction and rarefaction is obtained. A synthetic quartz glass for an optical member to be used for an optical device employing a light having a wavelength of at most 400 nm and at least 170 nm as a light source, which contains substantially no oxygen excess defects, dissolved oxygen molecules nor reduction type defects, which has a chlorine concentration of at most 50 ppm and a OH group concentration of at most 100 ppm, and which contains oxygen deficient defects within a concentration range of at most 5×1014 defects/cm3 and at least 1×1013 defects/cm3. The fluorine concentration is preferably at most 100 ppm.

    Abstract translation: 得到不含压实和稀释的用于光学构件的合成石英玻璃。 用于光学元件的合成石英玻璃,其用于使用波长最多为400nm且至少170nm的光作为光源的光学元件,其基本上不含氧过剩缺陷,溶解氧分子或还原型 其浓度最多为50ppm,OH基浓度为100ppm以下,含有缺氧缺陷量为5×1014个/ cm 3以下且至少1×10 13个缺陷/ cm 3以下的缺陷缺陷。 氟浓度优选为100ppm以下。

    Method of depositing glass soot
    224.
    发明授权
    Method of depositing glass soot 有权
    沉积玻璃烟灰的方法

    公开(公告)号:US07404302B2

    公开(公告)日:2008-07-29

    申请号:US10857081

    申请日:2004-05-27

    Abstract: A method for deposition glass soot for making an optical fiber preform. A fuel and a glass precursor are flowed to a burner flame forming glass soot which is deposited onto a glass target. By first depositing an insulating layer of glass soot with a low velocity burner flame, the amount of water which may be adsorbed into the surface of the glass target can be reduced. Thereafter, the flame velocity may be increased to increase the deposition rate of the glass soot without significantly increasing the concentration of water incorporated into the glass target.

    Abstract translation: 一种用于制造光纤预制棒的沉积玻璃烟炱的方法。 燃料和玻璃前体流到燃烧器火焰形成的玻璃烟灰,其沉积在玻璃靶上。 通过首先用低速燃烧器火焰沉积玻璃烟炱的绝缘层,可以减少可能吸附到玻璃靶的表面中的水的量。 此后,可以增加火焰速度以增加玻璃烟炱的沉积速率,而不会显着增加掺入玻璃靶中的水的浓度。

    METHOD FOR MANUFACTURING A LENS OF SYNTHETIC QUARTZ GLASS WITH INCREASED H2 CONTENT
    225.
    发明申请
    METHOD FOR MANUFACTURING A LENS OF SYNTHETIC QUARTZ GLASS WITH INCREASED H2 CONTENT 有权
    具有增加的H2含量的合成石英玻璃镜片的制造方法

    公开(公告)号:US20070266733A1

    公开(公告)日:2007-11-22

    申请号:US11748151

    申请日:2007-05-14

    Applicant: Eric Eva

    Inventor: Eric Eva

    Abstract: The invention relates to a method for the manufacture of a lens of synthetic quartz glass with increased H2 content, in particular for a lens for an optical system with an operating wavelength of less than 250 nm, in particular less than 200 nm, with the steps:providing a precursor product of synthetic quartz glass, in particular with a first H2 content of less than 2·1015 molecules/cm3, with a circumferential border surface and two base surfaces lying on opposite sides, wherein at least one partial surface of at least one of said base surfaces has a curvature, andtreating the precursor product in an H2-containing atmosphere in order to produce a precursor product of synthetic quartz glass with a second H2 content that is increased in relation to the first H2 content, in particular with a second H2 content of more than 1016 molecules/cm3, and measuring at least one optical property of said precursor product with said second H2 content.

    Abstract translation: 本发明涉及一种用于制造具有增加的H 2 O 3含量的合成石英玻璃透镜的方法,特别是用于具有小于250nm的工作波长的光学系统的透镜,特别是 小于200nm,步骤:提供合成石英玻璃的前体产物,特别是具有小于2.10 15分子/ cm 2的第一H 2 O 3含量 其具有周向边界表面和位于相对侧上的两个基面,其中至少一个所述基底表面的至少一个部分表面具有曲率,并且将前体产物处理成H 2 O 3, 2含量的气氛,以便产生合成石英玻璃的前体产物,其具有相对于第一H 2 N 2含量增加的第二H 2 N 2含量 特别是具有超过10个/ 16个分子/ cm 3的第二H 2 N 2含量,并且测量至少一种光学式 所述前体产物具有所述第二H 2 N 2含量的操作性。

    Optical fiber for improved performance in S-, C- and L-bands
    226.
    发明授权
    Optical fiber for improved performance in S-, C- and L-bands 有权
    用于提高S,C和L波段性能的光纤

    公开(公告)号:US07164833B2

    公开(公告)日:2007-01-16

    申请号:US10670013

    申请日:2003-09-24

    Abstract: An improved optical fiber design has been found to exhibit a relatively low attenuation at the wavelength of 1385 nm (the “water peak”), allowing for Raman amplification to be efficient and effective at wavelengths in the S-band range of 1460 to 1530 nm. An ultra-dry process is used to mate an inner core rod (core plus surrounding trench) with a cladding tube (ring region plus cladding layers) and provide a water peak loss on the order of 0.325 dB/km. The low water peak is combined with appropriate dispersion values and zero dispersion wavelength to form a fiber that supports transmission and Raman amplification in the S-, C- and L-bands of interest for optical transmission systems.

    Abstract translation: 已经发现改进的光纤设计在1385nm波长(“水峰”)处呈现相当低的衰减,允许拉曼放大在1460至1530nm的S波段范围内的波长下有效和有效 。 使用超干法将内芯棒(芯加周围沟槽)与包层管(环区加覆层)配合,并提供大约0.325 dB / km的水峰值损耗。 将低水峰与适当的色散值和零色散波长组合以形成支持光传输系统感兴趣的S,C和L带中的透射和拉曼放大的光纤。

    Process for producing optical fiber preform, process for producing optical fiber and optical fiber
    227.
    发明申请
    Process for producing optical fiber preform, process for producing optical fiber and optical fiber 有权
    光纤预制棒的制造方法,光纤和光纤的制造方法

    公开(公告)号:US20060204189A1

    公开(公告)日:2006-09-14

    申请号:US10567912

    申请日:2004-08-03

    Abstract: Methods of manufacturing an optical fiber preform and an optical fiber, and an optical fiber formed by this method of manufacturing an optical fiber are provided, the optical fiber preform having a desired refractive index profile and being capable of suppressing an increase in loss due to the absorption by OH groups. A pipe is formed by an inside vapor phase deposition method such that glass layer to be formed into a core and a glass layer to be formed into a part of a cladding pipe are deposited in a starting pipe, the glass layers each containing at least one of fluorine, germanium, phosphorous, and chlorine, the starting pipe being made of a silica glass having an outside diameter in the range of 20 to 150 mm and a wall thickness in the range of 2 to 8 mm. The pipe thus formed is collapsed to form a glass rod in which the concentration of hydroxyl groups is 10 weight ppm or less in a region from the surface of the glass rod to a depth of 1 mm therefrom.

    Abstract translation: 提供了制造光纤预制棒和光纤的方法以及通过该光纤制造方法形成的光纤,所述光纤预制棒具有所需的折射率分布并且能够抑制由于 OH基吸收。 通过内部气相沉积方法形成管,使得要形成芯的玻璃层和待形成为包层管的一部分的玻璃层沉积在起始管中,每个玻璃层包含至少一个 的氟,锗,磷和氯,起始管由外径在20〜150mm,壁厚在2〜8mm的范围内的石英玻璃制成。 由此形成的管道在从玻璃棒的表面到其深度为1mm的区域中折叠形成玻璃棒,其中羟基的浓度为10重量ppm以下。

    Synthetic quartz glass for optical member and its production method
    228.
    发明申请
    Synthetic quartz glass for optical member and its production method 有权
    光学构件合成石英玻璃及其制作方法

    公开(公告)号:US20060183623A1

    公开(公告)日:2006-08-17

    申请号:US11398669

    申请日:2006-04-06

    Abstract: A synthetic quartz glass for an optical member which is free from compaction and rarefaction is obtained. A synthetic quartz glass for an optical member to be used for an optical device employing a light having a wavelength of at most 400 nm and at least 170 nm as a light source, which contains substantially no oxygen excess defects, dissolved oxygen molecules nor reduction type defects, which has a chlorine concentration of at most 50 ppm and a OH group concentration of at most 100 ppm, and which contains oxygen deficient defects within a concentration range of at most 5×1014 defects/cm3 and at least 1×1013 defects/cm3. The fluorine concentration is preferably at most 100 ppm.

    Abstract translation: 得到不含压实和稀释的用于光学构件的合成石英玻璃。 用于光学元件的合成石英玻璃,其用于使用波长最多为400nm且至少170nm的光作为光源的光学元件,其基本上不含氧过剩缺陷,溶解氧分子或还原型 缺陷,其氯浓度最多为50ppm,OH基浓度为至多100ppm,并且其含有缺氧缺陷的浓度范围至多为5×10 14个/ cm 2以下 > 3%和至少1×10 3个缺陷/ cm 3。 氟浓度优选为100ppm以下。

    Method for producing synthetic quartz glass and synthetic quartz glass article
    230.
    发明申请
    Method for producing synthetic quartz glass and synthetic quartz glass article 有权
    生产合成石英玻璃和合成石英玻璃制品的方法

    公开(公告)号:US20060059948A1

    公开(公告)日:2006-03-23

    申请号:US10535935

    申请日:2003-11-28

    Abstract: First of all, there is provided a production process of a synthetic quartz glass which has less impurity, has a high-temperature viscosity characteristic equal to or more than that of a natural quartz glass, and hardly deforms even in a high-temperature environment, and especially a production process of a highly heat resistant synthetic quartz glass which is free from the generation of bubbles and is dense. Secondly, there is provided a highly heat resistant synthetic quartz glass body which is easily obtained by the production process of the present invention, and especially a transparent or black quartz glass body which is free from the generation of bubbles, is dense, has high infrared absorption rate and emission rate, and has an extremely high effect for preventing diffusion of alkali metal. The process is a process of producing a highly heat resistant quartz glass body having an absorption coefficient at 245 nm of 0.05 cm−1 or more, and the silica porous body was subjected to a reduction treatment, followed by baking, thereby forming a dense glass body.

    Abstract translation: 首先,提供了杂质少,具有等于或高于天然石英玻璃的高温粘度特性的合成石英玻璃的制造方法,即使在高温环境下也几乎不变形, 特别是高度耐热的合成石英玻璃的生产过程,其不产生气泡并且致密。 其次,提供了通过本发明的制造方法容易获得的高耐热性合成石英玻璃体,特别是不产生气泡的透明或黑色石英玻璃体,具有高红外 吸收率和排放率,对防止碱金属的扩散具有极高的效果。 该方法是生产具有245nm的吸收系数为0.05cm -1以上的高耐热性石英玻璃体的工序,对二氧化硅多孔体进行还原处理,其次是 烘烤,从而形成致密的玻璃体。

Patent Agency Ranking