Abstract:
The invention comprises a system and method of calibrating a reflected spectral imaging apparatus used for analysis of living tissue. In addition to the reflected spectral imaging apparatus itself, the calibration apparatus comprises an optical filter that is placed between the light source used in the imaging apparatus and the object under analysis, and a calibration module. The filter is fabricated such that when the light is passed through the filter, an image is projected onto the focal plane where imaging is to take place within the object. The image projected by the filter comprises a plurality of areas, each having a different known optical density. For each area, the calibration module measures the intensity of the light reflected from the area and maps the light intensity measurement to the optical density known to be present at the area. This correspondence of light intensity measurements and known optical densities is then used to calibrate the reflected spectral imaging apparatus.
Abstract:
Dispositif spectrophotométrique pour effectuer des mesures à distance sur un corps en solution contenu dans une cellule de mesure. Le dispositif comprend :
- au moins une cellule de mesure (14); - une boucle de mesure (I) constituée par au moins deux ensembles de fibres optiques (8,17) guidant le faisceau lumineux depuis la source lumineuse jusqu'au détecteur via au moins une cellule de mesure et une boucle de référence (II) comprenant au moins une fibre optique (27) ayant une lon- . gueur et une nature telles que la boucle de référence compense sensiblement la boucle de mesure. De préférence, la cellule de mesure (14) est placée dans une enceinte de protection (10) vis-à-vis des rayonnements.
Abstract:
We disclose an on-chip photonic spectroscopy system capable of dramatically improving the signal-to-noise ratio (SNR), dynamic range, and reconstruction quality of Fourier transform spectrometers. Secondly, we disclose a system of components that makes up a complete on-chip RF spectrum analyzer with low-cost and high-performance.
Abstract:
A liquid measuring system (LMS) comprising: a light source; a multi-region optical filter (MROF); a sample cell configured to contain a liquid sample; an optical detection subsystem (ODS) having an optical detector for measuring optical properties of light emanating from the liquid sample. The MROF may include a spectral filter region such as a bandpass or a long-pass filter type region, and natural density (ND) type filter region, for enabling simultaneous optical measuring at least of turbidity level and algae concentration in a water sample contained by the sample cell, by having light passed through the water sample and the MROF before reaching the optical detector of the ODS. Embodiments of the MROFs may be also used, for example for selective spectral attenuation of light illuminating the liquid sample to achieve reduction in distortions due to stray light.
Abstract:
A method, and corresponding system, can include identifying a plurality of wavelength spectral band components in hyperspectral image data, the spectral band components corresponding to mutually distinct sources of image contrast. An intensity image corresponding to each respective spectral band component can be calculated, followed by combining the respective intensity images to form an inter-band image based on the respective, mutually distinct sources of image contrast for each spectral band component. Intensity images can be hyperspectral or hyperdiffuse images. Hyperdiffuse imaging can be performed for each spectral band component identified using hyperspectral measurements. Spectral position and spectral width images corresponding to each spectral band component can be calculated and used to determine depth of features inside a surface of the target. Diffuse width images can be calculated from hyperdiffuse image data and used to determine depth.
Abstract:
A scanner and an attenuated total reflection (ATR) objective for use in such scanners are disclosed. The ATR objective includes first and second optical elements and an input port. The input port receives an input collimated light beam that is focused to a point on a planar face of the first optical element by the second optical element such that substantially all of that portion is reflected by the planar face and no portion of the input beam strikes the planar face at an angle less than the critical angle. The second optical element also generates an output collimated light beam from light reflected from the planar thce that is characterized by a central ray that is coincident with the central ray of the input collimated light beam. A light beam converter receives the first collimated light beam and generates the input collimated light beam therefrom.
Abstract:
A spectral camera includes a wavelength variable interference filter, an imaging unit having a plurality of light receiving elements arranged in a two-dimensional array configuration, and a wavelength acquisition unit which acquires center wavelengths of light beams received by the light receiving elements in accordance with signal values output from the light receiving elements when reference light is received by the imaging unit. Light amounts of the reference light corresponding to different wavelength components in a certain wavelength range are uniform in a plane, and different signal values are acquired when light beams of the different wavelength components are received by the light receiving elements.
Abstract:
Examples of a spectroscopy probe for performing measurements of Raman spectra, reflectance spectra and fluorescence spectra are disclosed. The integrated spectral probe can comprise one or more light sources to provide a white light illumination to generate reflectance spectra, an excitation light to generate an UV/visible fluorescence spectra and a narrow band NIR excitation to induce Raman spectra. The multiple modalities of spectral measurements can be performed within 2 seconds or less. Examples of methods of operating the integrated spectroscopy probe disclosed.
Abstract:
An imaging scanner and a method for using the same are disclosed. The scanner includes a variable attenuator adapted to receive a light beam generated by a MIR laser and that generates an attenuated light beam therefrom characterized by an attenuation level. The scanner includes an optical assembly that focuses the attenuated light beam to a point on a specimen. A light detector measures an intensity of light leaving the point on the specimen, the light detector being characterized by a detector dynamic range. A controller forms a plurality of MIR images from the intensity as a function of position on the specimen, each of the plurality of MIR images being formed with a different level of attenuation of the light beam. The controller combines the plurality of MIR images to generate a combined MIR image having a dynamic range greater than the detector dynamic range.