Abstract:
The invention relates to an optical arrangement, in particular a projection exposure apparatus (1) for EUV lithography, comprising: a housing (2) that encloses an interior space (15); at least one, in particular reflective, optical element (4 to 10, 12, 14.1 to 14.6) that is arranged in the housing (2); at least one vacuum generating unit (3) for generating a vacuum in the interior space (15) of the housing (2); and at least one vacuum housing (18, 18.1 to 18.10) that is arranged in the interior space (15) of the housing (2) and that encloses at least the optical surface (17, 17.1, 17.2) of the optical element (4 to 10, 12, 14.1 to 14.5), wherein a contamination reduction unit is associated with the vacuum housing (18.1 to 18.10), which contamination reduction unit reduces the partial pressure of contaminating substances, in particular of water and/or hydrocarbons, at least in close proximity to the optical surface (17, 17.1, 17.2) in relation to the partial pressure of the contaminating substances in the interior space (15).
Abstract:
An apparatus and method for EUV light production is disclosed which may comprise a laser produced plasma (" LPP") extreme ultraviolet ("EUV") light source control system comprising a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, comprising: a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, wherein the target stream track results from the imaging speed of the camera being too slow to image individual plasma formation targets forming the target stream imaged as the target stream track; a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site. At least one target crossing detector may be aimed at the target track and detecting the passage of a plasma formation target through a selected point in the target track. A drive laser triggering mechanism utilizing an output of the target crossing detector to determine the timing of a drive laser trigger in order for a drive laser output pulse to intersect the plasma initiation target at a selected plasma initiation site along the target track at generally its closest approach to the desired plasma initiation site. A plasma initiation detector may be aimed at the target track and detecting the location along the target track of a plasma initiation site for a respective target. An intermediate focus illuminator may illuminate an aperture formed at the intermediate focus to image the aperture in the at least one imaging device. The at least one imaging device may be at least two imaging devices each providing an error signal related to the separation of the target track from the vertical centerline axis of the image of the intermediate focus based upon an analysis of the image in the respective one of the at least two imaging devices. A target delivery feedback and control system may comprise a target delivery unit; a target delivery displacement control mechanism displacing the target delivery mechanism at least in an axis corresponding to a first displacement error signal derived from the analysis of the image in the first imaging device and at least in an axis corresponding to a second displacement error signal derived from the analysis of the image in the second imaging device. ® KIPO & WIPO 2007
Abstract:
다층 EUV 미러와 같은 광학 요소는 다이아몬드형 탄소(C), 보론 니트라이드(BN), 보론 카바이드(B 4 C), 실리콘 니트라이드(Si 3 N 4 ), 실리콘 카바이드(SiC), B, Pd, Ru, Rh, Au, MgF 2 , LiF, C 2 F 4 및 TiN과 그 화합물 및 합금의 보호 캡핑 층을 구비한다. 다층 코팅의 최종 주기는 개선된 보호 특징을 구비하도록 또한 변형될 수 있다.
Abstract:
A multilayer Laue lens (MLL) that can be operated over a large range of wavelengths which is achieved by providing a lens blank comprising a substrate element extending in a plane defined by orthogonal axes x, y, z, with a layered structure deposited on the upper surface with at least two different materials that are layered upon one another in an alternating manner, wherein the y-extension of the layered structure is constant along the x-axis and varies along the z-axis within a ramp section where the y-extension of the layered structure increases from a starting point, where first particles of material of the layered structure are deposited on the upper surface of the substrate element, to a saturation point, where a maximum y-extension of the layered structure is reached; and slicing a lens out of the lens blank.
Abstract:
A pellicle that includes graphene is constructed and arranged for an EUV reticle. A multilayer mirror includes graphene as an outermost layer.
Abstract:
A pellicle that includes graphene is constructed and arranged for an EUV reticle. A multilayer mirror includes graphene as an outermost layer.
Abstract:
A reflective mirror is provided with a base and a multilayer film including a first layer and a second layer laminated alternately on the base and capable of reflecting at least a portion of incident light. The multilayer film is provided with a first portion having a first thickness, and with a second portion having a second thickness that is different from the first thickness, and which is provided at a position rotationally symmetric to that of the first portion about an optical axis of the reflective mirror.
Abstract:
A projection lens of an EUV-lithographic projection exposure system with at least two reflective optical elements each comprising a body and a reflective surface for projecting an object field on a reticle onto an image field on a substrate if the projection lens is exposed with an exposure power of EUV light, wherein the bodies of at least two reflective optical elements comprise a material with a temperature dependent coefficient of thermal expansion which is zero at respective zero cross temperatures, and wherein the absolute value of the difference between the zero cross temperatures is more than 6K.
Abstract:
A lithographic apparatus for patterning a beam of radiation and projecting it onto a substrate, comprising at least two spectral purity filters configured to reduce the intensity of radiation in the beam of radiation in at least one undesirable range of radiation wavelength, wherein the two spectral purity filters are provided with different radiation filtering structures from each other.
Abstract:
A mirror (1a; 1a′; 1b; 1b; 1c; 1c′) with a substrate (S) and a layer arrangement configured such that light (32) having a wavelength below 250 nm and incident on the mirror at at least an angle of incidence of between 0° and 30° is reflected with more than 20% of its intensity. The layer arrangement has at least one surface layer system (P′″) having a periodic sequence of at least two periods (P3) of individual layers, wherein the periods (P3) include a high refractive index layer (H′″) and a low refractive index layer (L′″). The layer arrangement has at least one graphene layer. Use of graphene (G, SPL, B) on optical elements reduces surface roughness to below 0.1 nm rms HSFR and/or protects the EUV element against a radiation-induced volume change of more than 1%. Graphene is also employed as a barrier layer to prevent layer interdiffusion.