Abstract:
A method of forming an optical element is provided. The method includes producing silica-based soot particles using chemical vapor deposition, the silica-based soot particles having an average particle size of between about 0.05 μm and about 0.25 μm. The method also includes forming a soot compact from the silica-based soot particles and doping the soot compact with a halogen in a closed system by contacting the silica-based soot compact with a halogencontaining gas in the closed system at a temperature of less than about 1200° C.
Abstract:
An optical component made of synthetic quartz glass includes a glass structure substantially free of oxygen defect sites and having a hydrogen content of 0.1×1016 to 1.0×1018 molecules/cm3, an SiH group content of less than 2×1017 molecules/cm3, a hydroxyl group content of 0.1 to 100 wt. ppm, and an Active temperature of less than 1070° C. The optical component undergoes a laser-induced change in the refractive index in response to irradiation by a radiation with a wavelength of 193 nm using 5×109 pulses with a pulse width of 125 ns and a respective energy density of 500 μJ/cm2 at a pulse repetition frequency of 2000 Hz. The change totals a first measured value M193 nm when measured using the applied wavelength of 193 nm and a second measured value M633 nm when measured using a measured wavelength of 633 nm. The ratio M193 nm/M633 nm is less than 1.7.
Abstract:
A method for forming an optical fiber preform and fibers drawn from the preform. The method includes forming a soot cladding monolith, inserting a consolidated core cane into the internal cavity, and processing the resulting core-cladding assembly to form a preform. Processing may include exposing the core-cladding assembly to a drying agent and/or dopant precursor, and sintering the core-cladding assembly in the presence of a reducing agent to densify the soot cladding monolith onto the core cane to form a preform. The preform features low hydroxyl content and low sensitivity to hydrogen. Fibers drawn from the preform exhibit low attenuation losses from absorption by the broad band centered near 1380 nm.
Abstract:
A doped silica-titania glass article is provided that includes a glass article having a glass composition comprising (i) a silica-titania base glass, (ii) a fluorine dopant, and (iii) a second dopant. The fluorine dopant has a concentration of fluorine of up to 5 wt. % and the second dopant comprises one or more oxides selected from the group consisting of Al, Nb, Ta, B, Na, K, Mg, Ca and Li oxides at a total oxide concentration from 50 ppm to 6 wt. %. Further, the glass article has an expansivity slope of less than 0.5 ppb/K2 at 20° C. The second dopant can be optional. The composition of the glass article may also contain an OH concentration of less than 100 ppm.
Abstract:
A method for producing a silica glass blank co-doped with titanium and fluorine for use in EUV lithography includes (a) producing a TiO2—SiO2 soot body by flame hydrolysis of silicon- and titanium-containing precursor substances, (b) fluorinating the TiO2—SiO2 soot body to form a fluorine-doped TiO2—SiO2 soot body, (c) treating the fluorine-doped TiO2—SiO2 soot body in a water vapor-containing atmosphere to form a conditioned soot body, and (d) vitrifying the conditioned soot body to form the blank. The blank has an internal transmission of at least 60% in the wavelength range of 400 to 700 nm at a sample thickness of 10 mm, a mean OH content in the range of 10 to 100 wt. ppm and a mean fluorine content in the range of 2,500 to 10,000 wt. ppm. Titanium is present in the blank in the oxidation forms Ti3+ and Ti4+.
Abstract:
A blank made of titanium-doped silica glass for a mirror substrate for use in EUV lithography is provided. The blank includes a surface portion to be provided with a reflective film and having an optically used area (CA) over which a coefficient of thermal expansion (CTE) has a two-dimensional inhomogeneity (dCTE) distribution profile averaged over a thickness of the blank. A maximum inhomogeneity (dCTEmax) of less than 5 ppb/K is defined as a difference between a CTE maximum value and a CTE minimum value. The dCTEmax is at least 0.5 ppb/K. The CA forms a non-circular area having a centroid. The dCTE distribution profile is not rotation-symmetrical and is defined over the CA, such that straight profile sections normalized to a unit length and extending through the centroid of the area yield a dCTE family of curves forming a curve band with a bandwidth of less than 0.5×dCTEmax.
Abstract:
A method for forming an optical fiber preform and fibers drawn from the preform. The method includes forming a soot cladding monolith, inserting a consolidated core cane into the internal cavity, and processing the resulting core-cladding assembly to form a preform. Processing may include exposing the core-cladding assembly to a drying agent and/or dopant precursor, and sintering the core-cladding assembly in the presence of a reducing agent to densify the soot cladding monolith onto the core cane to form a preform. The preform features low hydroxyl content and low sensitivity to hydrogen. Fibers drawn from the preform exhibit low attenuation losses from absorption by the broad band centered near 1380 nm.
Abstract:
A manufacturing method according to an embodiment of the invention includes a step of calculating Pj0.1 satisfying (62.6×JOH+1175)×Pj=0.1, where Pj is an optical power ratio at the wavelength 1383 nm of a portion corresponding to a cladding material of an MCF after drawn, and an outer diameter ratio Pcc0.1 of core portions to core rods to obtain Pj0.1. The core rods have an outer diameter 2R0.1 satisfying the condition that a ratio Pcc is not less than the ratio Pcc0.1, and the cladding material has holes formed in a diameter larger by C (not less than 0.15 mm and not more than 1.5 mm) than the outer diameter of the core rods.
Abstract:
Methods for producing an optical fiber by elongating a silica glass blank or a coaxial group of silica glass components, on the basis of which a fiber is obtained that comprises a core zone, an inner jacket zone enclosing the core zone and a ring zone surrounding the inner jacket zone, are known. In order to provide, proceeding from this, a method, a tubular semi-finished product and a group of coaxial components for the cost-effective production of an optical fiber, which is characterized by a high quality of the boundary between the core and jacket and by low bending sensitivity, according to the invention, the silica glass of the ring zone is provided in the form of a ring zone tube made of silica glass having a mean fluorine content of at least 6000 weight ppm and the tube has an inner tube surface and an outer tube surface, wherein via the wall of the ring zone tube, a radial fluorine concentration profile is adjusted which has an inner fluorine depletion layer with a layer thickness of at least 1 μm and no more than 10 μm, in which the fluorine content decreases toward the inner tube surface and is no more than 3000 weight ppm in a region close to the surface which has a thickness of 1 μm.
Abstract:
Disclosed is a method of producing a synthetic quartz glass for excimer laser by depositing on a target silica particulates obtained by subjecting a silica raw material to vapor-phase hydrolysis or oxidative decomposition in an oxyhydrogen flame in a vacuum sintering furnace to form a porous silica base material, vitrifying the porous silica base material, and subjecting the vitrified material to hot forming, an annealing treatment and a hydrogen doping treatment, wherein the vitrification of the porous silica base material includes: (a) a step of holding a vacuum pressure at or below 20.0 Pa in a temperature range from 400° C., inclusive, to 900° C., exclusive; (b) a step of holding a vacuum pressure at or below 10.0 Pa in a temperature range from 900° C., inclusive, to 1100° C., exclusive; and (c) a step of holding a vacuum pressure at or below 3.0 Pa in a temperature range from 1100° C. to a transparent-vitrification temperature.