Abstract:
An apparatus of an electron cyclotron resonance ion source may include: a magnet unit containing a magnet for generating magnetic fields; an ionizing chamber housing unit for generating ions through electron cyclotron resonance from a plasma; a microwave generating unit for injecting microwaves to the ionizing chamber housing unit to generate ions; and a beam integrating and guiding unit for treating the generated ions. The magnet unit may include: a bobbin for winding the magnet; a variable spacer for dividing the bobbin into a plurality of sections; and the magnet which is wound into the form of a wire or a tape in the plurality of sections formed by the variable spacer.
Abstract:
Disclosed herein is an electrochemical measurement system for analyzing heavy metals in organic compound-containing samples, comprising: a lower plate; a flow channel plate; an upper plate; an organic compound-decomposing electrode and a heavy metal analysis electrode; and a flow changeover portion. The disclosed system can continuously perform a pretreatment process for organic compound decomposition and a process for heavy metal analysis, thus making it possible to achieve the selective analysis and separation of heavy metals in wastewater. Also, it can substitute for expensive spectrophotometric analysis equipment and makes it possible to monitor trace heavy metals on-line in situ. In addition, it may include a small-sized battery as a power source, such that it is easy to carry and use.
Abstract:
The present invention relates to a neutral particle beam processing apparatus. More specifically, the present invention relates to a neutral particle beam processing apparatus comprising a plasma discharging space inside which processing gases are converted to plasma ions through a plasma discharge, a heavy metal plate which converts the plasma ions into neutral particles through collisions, a plasma limiter which prevents plasma ions and electrons from passing through and allows the neutral particles produced by collisions of the plasma ions with the heavy metal plate to pass through, and a treating housing inside which a substrate to be treated is located, wherein the plasma discharging space is sandwiched between the heavy metal plate and the plasma limiter.
Abstract:
The present invention relates to the method for tagging of carbohydrates with active methylene compound. Particularly, it relates to the method for tagging of carbohydrates with active methylene compound comprising the step of preparing carbohydrate conjugate in which carbohydrate and methylene compound are combined by mixing carbohydrate mixture and methylene compound under aqueous polar aprotic solvent containing amine base catalyst. The tagging method of the present invention does not need many kinds of chemical reagent and the reactions can be taken even in the presence of certain amount of impurities. So, it can be used for the analysis of oligosaccharide present in the various kinds of samples.
Abstract:
A device and a method for measuring a time-resolved thermal image are disclosed. An embodiment comprises an optical imaging unit comprising a camera and a probe light source, the optical imaging unit emitting a probe optical signal from the probe light source to a sample during a time-resolution time; a control unit for outputting a first trigger signal to the camera, outputting a driving signal to the probe light source such that the probe light source emits the probe light source to the sample during the time-resolution time, outputting a second trigger signal to a bias unit in an turn-on interval, and outputting no second trigger signal to the bias unit in a turn-off interval; and a bias unit for applying a bias signal generated on the basis of the second trigger signal in the turn-on interval to the sample, and applying no bias signal to the sample in the turn-off interval. The camera generates a first reflection image of the sample by using a signal reflected from the sample when the probe optical signal is emitted to the sample during the time-resolution time in the turn-on interval. The camera generates a second reflection image of the sample by using a signal reflected from the sample when the probe optical signal is emitted to the sample during the time-resolution time in the turn-off interval. The control unit generates a time-resolved thermoreflectance image of the sample on the basis of the generated first and second reflection images.
Abstract:
The present invention relates to an ethylene disposal apparatus comprising: a plasma discharge part having an inlet and an outlet and being filled with an adsorbent; and an electrode part for generating plasma inside the plasma discharge part, wherein the adsorbent has a catalyst supported thereon. The present invention relates to an ethylene disposal method using the ethylene disposal apparatus, the method comprising the steps of: (a) injecting ethylene-containing gas into a plasma discharge part filled with the adsorbent; (b) applying voltage to the electrode part and generating plasma in the plasma discharge part, thereby degrading the injected ethylene; and (c) cooling the plasma discharge part.
Abstract:
The present invention relates to a spintronic wireless communication system for simultaneously modulating multiband frequencies and amplitudes, the system comprising: a plurality of spin-torque transfer devices which have different frequency characteristics from each other, and OOK modulate or multi-level ASK modulate input data to thereby output a multiband OOK modulation signal or a multiband, multi-level ASK modulation signal; a plurality of matching networks which match individual impedances of the plurality of spin-torque transfer devices; and a broadband antenna which receives the multiband OOK modulation signal or the multiband, multi-level ASK modulation signal from ends of the plurality of matching networks and simultaneously transmits the signals to the outside.
Abstract:
An apparatus for generating X-ray may include: a plasma chamber; a magnet unit for applying a magnetic field to the plasma chamber, the magnet unit configured to allow the control of the magnitude of the minimum magnetic field in the plasma chamber without change in structure; a microwave generator for applying microwaves to the plasma chamber; a reaction gas injected into the plasma chamber for generating X-ray through electron cyclotron resonance by the magnetic field and the microwaves; a variable guide for focusing the generated X-ray; and a variable extractor for outputting the focused X-ray from the plasma chamber.
Abstract:
Disclosed is a method of analyzing mass of the phosphoproteins or phosphopeptides and of analyzing phosphorylated positions at a phosphoprotein or phosphopeptide, comprising the steps of: 1) dephosphorylating at least one Ser and/or Thr residue of the phosphoprotein or phosphopeptide; 2) tagging the dephosphorylated amino acid residues with a tag having a R-L-G moiety wherein R is a nucleophilic functional group that selectively bind with dephosphorylated amino acid residues, G is selected from the group consisting of guanidine moiety or protected guanidine moiety such as a mono-N-protected guanidino group, a di-N,N'-protected guanidino group and an N'-protected guanidino group, and L is a linker linking the R and the G; and 3) subjecting the tagged proteins or peptides to mass spectrometry. The method is capable of precisely analyzing mass of phosphoproteins of trace amounts as well as positions of phosphoryated amino acids.