Abstract:
Compositions for directed self-assembly (DSA) patterning techniques are provided. Methods for directed self-assembly are also provided in which a DSA composition comprising a block copolymer is applied to a substrate and then self-assembled to form the desired pattern. The block copolymer includes at least two blocks of differing etch rates, so that one block (e.g., polymethylmethacrylate) is selectively removed during etching. Because the slower etching block (e.g., polystyrene) is modified with an additive to further slow the etch rate of that block, more of the slow etching block remains behind to fully transfer the pattern to underlying layers.
Abstract:
A method of forming a plurality of regularly spaced lithography features, e.g. contact holes, including: providing a trench on a substrate, the trench having opposing side-walls and a base, with the side-walls having a width therebetween, wherein the trench is formed by photolithography including exposing the substrate using off-axis illumination whereby a modulation is provided to the side-walls of the trench; providing a self-assemblable block copolymer having first and second blocks in the trench; causing the self-assemblable block copolymer to self-assemble into an ordered layer in the trench, the layer having first domains of the first block and second domains of the second block; and selectively removing the first domain to form at least one regularly spaced row of lithography features having the second domain along the trench.
Abstract:
본 발명은 나노 닷 또는 나노 홀 형태의 나노 패턴을 용이하게 형성할 수 있고, 이를 이용해 형성된 금속 나노 패턴 등을 차세대 정보저장용 자기 기록 매체 등에 적절히 적용 가능하게 하는 실리콘 옥사이드 나노 패턴의 형성 방법, 금속 나노 패턴의 형성 방법과, 이를 이용한 정보저장용 자기 기록 매체에 관한 것이다. 상기 실리콘 옥사이드 나노 패턴의 형성 방법은 기재 상의 실리콘 옥사이드 상에, 소정의 하드세그먼트와, (메타)아크릴레이트계 반복단위를 포함한 소프트세그먼트를 포함하는 블록공중합체의 박막을 형성하는 단계; 박막을 배향시키는 단계; 블록공중합체의 박막에서 소프트세그먼트를 선택적으로 제거하는 단계; 및 소프트세그먼트가 제거된 블록공중합체 박막을 마스크로, 실리콘 옥사이드를 반응성 이온 식각하여 실리콘 옥사이드의 나노 닷 또는 나노 홀 패턴을 형성하는 단계를 포함한다.
Abstract:
A method of forming a composition includes adding together a plurality of particle brush systems wherein each of the particle brush systems includes a particle and a polymer brush including a plurality of polymer chains attached to the particle. The plurality of polymer chains of the polymer brush exhibit two chain conformations as the degree of polymerization of the polymer chains increases so that the polymer brush includes a concentrated polymer brush region with stretched polymer chains and a semi-dilute polymer brush region with relaxed chains that is radially outside of the concentrated polymer brush region. The degree of polymerization of the polymer brush is no less than 10% less than a critical degree of polymerization and no more than 20% greater than the critical degree of polymerization. The critical degree of polymerization is defined as the degree of polymerization required to achieve a transition from the concentrated polymer brush region to the semi-dilute polymer brush region.
Abstract:
The present invention uses vacuum deposited thin films of material to create an interface that non-preferentially interacts with different domains of an underlying block copolymer film. The non-preferential interface prevents formation of a wetting layer and influences the orientation of domains in the block copolymer. The purpose of the deposited polymer is to produce nanostructured features in a block copolymer film that can serve as lithographic patterns.
Abstract:
A method for forming patterns of organic polymer materials. The method can be used to form a layer with two patterned organic polymer materials. The photoresist and solvents used in the photoresist deposition and removal steps do not substantially affect the organic polymer materials.
Abstract:
Methods for fabricating sublithographic, nanoscale microslructures in line arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.