Abstract:
In a semi-finished product for the production of a printed circuit board, the semi-finished product comprising a plurality of having multiple insulating layers of a prepreg material and conductive layers (2, 2′) of a conductive material and further comprising having at least one electronic component embedded in at least one insulating layer the at least one electronic component is attached to a corresponding conductive layer by the aid of an Anisotropic Conductive Film and the Anisotropic Conductive Film as well as the prepreg material are in an unprocessed state. The method for producing a printed circuit board comprises the following steps: Providing at least one conductive layer (2), Applying an Anisotropic Conductive Film on the conductive layer, Affixing at least one electronic component on the Anisotropic Conductive Film, Embedding the electronic component in at least one insulating layer of prepreg material to obtain a semi-finished product, Laminating the semi-finished product to process the prepreg material and the Anisotropic Conductive Film.
Abstract:
A novel imidazole compound that yields a surface treatment liquid that is very effective at suppressing migration and oxidation of a wiring surface; a metal surface treatment liquid that contains the imidazole compound; a metal surface treatment method that uses the metal surface treatment liquid; and a laminate production method that uses the surface treatment liquid. A metal is surface-treated using the surface treatment liquid which includes a saturated fatty acid or a saturated fatty acid ester of a specific structure, in which a prescribed position is substituted by an aromatic group of a prescribed structure and an imidazolyl group that may have a substituent group.
Abstract:
A wiring substrate includes an insulating layer, a stack including wiring layers and photosensitive-resin insulating layers on a first surface of the insulating layer, a wiring layer on a second surface of the insulating layer, having a lower wiring density than the wiring layers, a metal core plate buried in the insulating layer and positioned on the stack side with respect to the center of the insulating layer in its thickness direction, and a via wiring buried in the insulating layer to have a first end face exposed at the first surface and joined to the lowermost one of the wiring layers, and a second end face joined to the metal core plate. The first surface and the first end face are substantially flush with each other. The wiring layers include a signal line, and a ground line concentrically formed around the signal line, with a predetermined interval therebetween.
Abstract:
An electrical conductor includes a substrate; and a first conductive layer disposed on the substrate and including a plurality of metal oxide nanosheets, wherein adjacent metal oxide nanosheets of the plurality of metal oxide nanosheets contact to provide an electrically conductive path between the contacting metal oxide nanosheets, wherein the plurality of metal oxide nanosheets include an oxide of Re, V, Os, Ru, Ta, Ir, Nb, W, Ga, Mo, In, Cr, Rh, Mn, Co, Fe, or a combination thereof, and wherein the metal oxide nanosheets of the plurality of metal oxide nanosheets have an average lateral dimension of greater than or equal to about 1.1 micrometers. Also an electronic device including the electrical conductor, and a method of preparing the electrical conductor.
Abstract:
An array of chip sockets defined by an organic matrix framework surrounding sockets through the organic matrix framework and further comprising a grid of metal vias through the organic matrix framework. In an embodiment, a panel includes an array of chip sockets, each surrounded and defined by an organic matrix framework including a grid of copper vias through the organic matrix framework. The panel includes at least a first region with sockets having a set of dimensions for receiving one type of chip and a second region with sockets and another set of dimensions for receiving a second type of chip.
Abstract:
A conductive polymer-metal complex becomes to be adhered simply and strongly on the surface of a substrate such as PTFE. By subjecting a solution containing a monomer which provides a conductive polymer, an anion, and a metal ions such as Ag+, Cu2+, Cu+ and the like to an irradiation with light having an energy required for exciting an electron to an energy level capable of reducing the metal ion, such as ultraviolet light, under an appropriated condition, thereby precipitating the conductive polymer-metal complex as being dispersed in the reaction liquid. By supplying this dispersion liquid onto various substrates, the complex microparticles in the dispersion liquid enter into and mate with the narrow holes on the surface of the substrate. As a result, the complex precipitate formed on the surface of the substrate and the substrate can be adhered strongly to each other.
Abstract:
A substrate for a printed circuit board according to the present invention includes a base film having an insulating property and including at least one opening; a first conductive layer that is formed on both surfaces of the base film by applying and heat-treating a conductive ink containing metal particles, and that fills the at least one opening; and a second conductive layer formed, by plating, on at least one of surfaces of the first conductive layer. The metal particles preferably have a mean particle size of 1 nm or more and 500 nm or less.
Abstract:
An electrical connection structure includes a variable-composition nickel alloy layer with a minor constituent selected from a group consisting of boron, carbon, phosphorus, and tungsten, wherein at least over a portion of a conductive substrate, the concentration of the minor constituent decreases throughout the variable-composition nickel alloy layer in a direction from the bottom surface of the variable-composition nickel alloy layer to the top surface of the variable-composition nickel alloy layer.
Abstract:
The printed circuit board with at least one substrate layer having signal lines on a corresponding upper surface and on a corresponding lower surface has a sleeve-sized conductive layer on a circumference of at least one via hole between the upper and lower surface for a conductive connection between at least one signal line on the upper surface and at least one signal line on the lower surface. to An axial enlargement of the sleeve-sized conductive layer is radially bent above a base layer of copper on the upper surface and below a base layer of copper on the lower surface.
Abstract:
The present invention relates to an electric and/or electronic circuit including a printed circuit board (20), at least one separate circuit board (10) and at least one power connector (12) for said printed circuit board (20). The at least one power connector (12) is connected or connectable to a corresponding counterpart. A number of electric and/or electronic components (22) is sold at the separate circuit board (10). The at least one separate circuit board (10) is connected to the printed circuit board (20) by a number of solder joints (16). The solder joints (16) are connected to the separate circuit board (10) by a through-hole-technology. The solder joints (16) are connected to the printed circuit board (20) by SMD (surface mount device) technology. At least one power connector (12) is fastened at the separate circuit board (10) by the through-hole-technology.