Abstract:
본 발명은 세탁기에 관한 것으로, 그 목적은 펄세이터의 중심부 상방으로 세탁수를 분출시켜 세탁물의 꼬임과 엉킴을 억제함으로써 세탁성능을 향상시키는 것이다. 본 발명에 따른 세탁기는 세탁수류를 형성하는 펄세이터(40)에 이의 회전시 중심부 상측으로 세탁수가 분출되도록 안내하는 분출구(62a)가 형성된 분출캡(62)이 설치되어 있는데, 분출구(62a)는 선단부가 분출구(62a) 외측경계면(A)과 일정간격 이격된 다수개의 리브(62b)에 의해 구획되어져 있다. 따라서 세탁은 펄세이터(40)의 회전에 의해 발생되는 원심 세탁수류에 의해 이루어지며, 동시에 세탁수가 리브(62b)에 의해 구획된 분출구(62a)를 통해 세탁조(30)의 중심부 상방으로 분출됨으로써, 세탁물이 세탁조(30) 중심부로 집중되는 것이 방지되고, 이들의 꼬임 및 엉킴이 억제되어 세탁성능이 향상되는 이점이 있다.
Abstract:
A data mapping method for performing inversion in LCD driver and LCD using the same are provided to efficiently perform time division driving of source lines without dimension increase of source driver. A buffer(510) outputs NxM bit pixel data by buffering a pixel data inputted into 24 bit unit. A delay device(520) delays the NxM bit pixel data received from the buffer as a predetermined time. A control signal generator(530) generates a scan direction signal and a line number signal. A data mapping part(540) generates a combination pixel data by assembling current pixel data and previous pixel data according to the scan direction signal and the line number signal.
Abstract:
A boosting voltage generator including a charge pump of a high efficiency and method thereof is provided to relieve a noise characteristics of a boosting voltage by an external voltage by using a BGR(Band Gap Reference). A boosting voltage generator(100) charges a first voltage to a first exterior capacitor(C31) in a first phase, and outputs a voltage corresponding to an electric charge charged in the first voltage and a second exterior capacitor(C32) by pumping a electric charge charged in the second exterior capacitor in advance. The boosting voltage generator charges a first voltage to a second exterior capacitor in a second phase, and outputs a voltage corresponding to an electric charge charged in the first voltage and the first exterior capacitor by pumping an electric charge charged in the first exterior capacitor in advance.
Abstract:
포토 장비의 변화에 상관없이 "플로팅 게이트-컨트롤 게이트" 간의 오버랩 면적을 대칭 관계에 있는 좌·우 셀에서 균일하게 가져갈 수 있도록 하여 좌·우측 셀의 이레이즈 및 프로그램 특성이 달라지는 것을 방지하고, 기존대비 "플로팅 게이트-컨트롤 게이트" 간의 오버랩 면적을 감소시켜 이들 간의 커패시턴스 값을 줄일 수 있도록 한 스플리트 게이트형 플래시 메모리 소자 제조방법이 개시된다. 이를 위하여 본 발명에서는, 반도체 기판 상에 제 1 절연막과 텍스쳐 표면처리된 제 1 도전막을 순차적층하는 단계; 상기 결과물 상에 질화막 형성후, 제 1 도전막의 표면이 일부 노출되도록 질화막을 경사식각하는 단계; 질화막의 양 측벽에 제 1 스페이서를 형성하고, 그 사이의 기판 표면이 노출되도록 1 도전막과 제 1 절연막을 순차식각하는 단계; 상기 제 1 스페이서 사이의 기판 내에 소스 정션을 형성하고, 제 1 도전막의 양 측벽에 제 2 스페이서를 형성하는 단계; 소스 정션과 연결되는 소스 라인 형성후, 표면 산화를 실시하는 단계; 질화막을 제거하는 단계; 제 1 스페이서를 마스크로해서 제 1 도전막을 선택식각하여 플로팅 게이트를 형성하는 단계; 플로팅 게이트의 표면 노출부를 따라 제 2 절연막을 형성하는 단계; 상기 결과물 상에 제 2 도전막을 증착하고, 이를 에치백하여 컨트롤 게이트를 형성하는 단계로 이루어진 스플리트 게이트형 플래시 메모리 소자 제조방법이 제공된다.
Abstract:
PURPOSE: A method for fabricating a split-gate flash memory device is provided to prevent resistance from being reduced by a decreased area of a wordline by forming a vertical sidewall of the wordline and by making the width of the sidewall of the wordline uniform. CONSTITUTION: The first spacer surrounds a floating gate. The first junction region of a predetermined conductivity type is formed in the substrate, overlapping the first spacer. The first conductive line is formed on the first junction region, contacting the first spacer. A semiconductor substrate having an opposite conductivity type to the first junction region is prepared. The first insulation layer, the first conductive layer, the second insulation layer and the third insulation layer are sequentially formed on the substrate. The third insulation layer is etched to expose the second insulation layer. The exposed second insulation layer is eliminated. The remaining third insulation layer is removed. The first conductive layer and the second insulation layer are etched by a predetermined thickness to expose a part of the first conductive line and the first conductive layer. The fourth insulation layer is formed in a part of the first conductive line and the first conductive layer. The remaining second insulation layer is eliminated to expose the first conductive layer. The second insulation layer is removed by using the fourth insulation layer as a mask so that the exposed first insulation layer and the exposed conductive layer are etched to form the second gate insulation layer and the wordline.
Abstract:
PURPOSE: A method for manufacturing a split gate flash memory device is provided to be capable of uniformly conserving the line width of a select gate electrode by using an oxide pattern having a uniform thickness. CONSTITUTION: A floating gate electrode(104a), a pair of spacers(108), a source region(110), and a source line(112) are sequentially formed on a semiconductor substrate(100). After sequentially forming a gate oxide layer(114), a select gate conductive layer(116), an anti-reflective coating, and a silicon nitride layer on the resultant structure, a CMP(Chemical Mechanical Polishing) process is carried out on the resultant structure for exposing the surface of the source line. Then, residual anti-reflective coating is selectively removed. An oxide pattern(132) is selectively formed on the resultant structure by carrying out a thermal oxidation process at the resultant structure. Then, a select gate electrode is completed by etching the select gate conductive layer using the oxide pattern as an etching mask.
Abstract:
PURPOSE: A method for fabricating a flash memory is provided to perform a smooth erase operation by making a tip part of a conductive layer spacer have an acute angle through an additional simple process, and to prevent a programming speed from being decreased by preventing a tunneling gate insulation layer under a floating gate from being thickened. CONSTITUTION: The tunneling gate insulation layer(203) and the first conductive layer are formed on a substrate(201). A sub layer pattern(207) having etch selectivity regarding the first conductive layer is formed on the first conductive layer, including a linear gap in the first direction. The second conductive layer is conformally stacked on the substrate and is blanket-etched to form the second conductive layer spacer(209) connected to the first conductive layer on the sidewall of the sub layer pattern. The first insulation material layer that has an etch selectivity regarding the first conductive layer and the sub layer over the second conductive layer spacer is conformally stacked on the substrate. The first spacer that fills a part of the linear gap and exposes the first conductive layer in the center of the linear gap is formed on the sidewall of the sub layer pattern by performing a blanket anisotropic etch process on the first insulation material layer.