Abstract:
PURPOSE: A method for manufacturing BixSb2-xTe3 nanocompound thermoelectric materials and the nanocompound thermoelectric materials manufactured by the same are provided to increase a thermoelectric performance index by synthesizing BixSb2-xTe3 nanocompounds for a low temperature through a wet chemical process. CONSTITUTION: Bi-Sb solutions are made by injecting a Bi and Sb precursor to solvents(A1). Te solutions are made by injecting Te powder to mixture of acid and solvents(A2). BixSb2-xTe3 reactants are made by mixing the Bi-Sb solutions with the Te solutions(A3). BixSb2-xTe3 nanoparticles are obtained by filtering and drying the BixSb2-xTe3 reactants(A4). The BixSb2-xTe3 nanoparticles are thermally processed(A5). [Reference numerals] (A1) Forming Bi-Sb solutions; (A2) Making Te solutions; (A3) Reacting between the Bi-Sb solutions and Te solutions; (A4) Obtaining BixSb2-xTe3 nanoparticles by filtering and drying; (A5) Thermally processing the BixSb2-xTe3 nanoparticles; (AA) Start; (BB) End
Abstract:
PURPOSE: A powder heat treatment device is provided to manufacture powder of uniform particle size by performing the uniform heat treatment of a reaction vessel filled with powder. CONSTITUTION: A thermal process is performed in a reaction pipe. An outer pipe is arranged at outside of the reaction pipe to surround the reaction pipe. A rotation device(330) rotates the reaction pipe and outer pipe. The reaction pipe comprises a reaction chamber(314). The cross section of the reaction chamber is polygonal shape. A fixed amount of ambient gas is provided to the space between the outer pipe and the reaction pipe in order to separate the reaction pipe from external environment.
Abstract:
An organic light emitting diode containing anthracene derivative compound is provided to have high efficiency, longevity and color purity by substituting with two or more hetero cyclic compounds. An anthracene derivative compound is denoted by the chemical formula 1. The organic light emitting diode comprises a first electrode, organic layer containing one or more layer having light emitting layer, and a second electrode. The one or more layer in organic layer comprises the anthracene derivative compound of the chemical formula 1. The light emitting layer comprises a host and dopant, the host is anthracene derivative compound of the chemical formula 1. The dopant is phosphorescence compound.
Abstract:
본 발명은 고분자 화합물 및 이를 이용한 고분자 전계발광소자에 관한 것으로, 상기 고분자 화합물은 반복단위로서 정공수송특성이 우수한 아민기가 최소 2개 이상 포함되어 있고, 특히 2개 이상의 아민기 중 최소 1개는 카바졸기이기 때문에, 정공 및 전자수송특성이 우수하며, 이러한 페닐카바졸기를 갖는 고분자 화합물을 유기전계발광소자에 적용하면, 고휘도, 색재현 범위가 우수한 풀칼라 디스플레이의 구현이 가능할 뿐만 아니라, 대화면의 OLED TV 구현에도 기여할 수 있다. 페닐카바졸기, 아민기, 전계발광소자, 카바졸기, 고분자 화합물, 정공수송특성, 전자수송특성, 호스트, 도펀트
Abstract:
A method for manufacturing a transparent counter electrode of a dye-sensitive solar cell is provided to adjust a concentration of platinum nano particles by controlling a process time and a current amount of an electro-reduction process. An electrolyte solution containing platinum ions is provided(110). The electrolyte solution is placed in an electro-chemical reactor(140) with a transparent conductive substrate(120) and a counter electrode(130). Negative and positive voltages are applied on the transparent conductive substrate and the counter electrode, respectively, by using a DC voltage supply(150), such that platinum ions are decreased in the conductive substrate. Voltage/current density and application timing are adjusted, such that the platinum particles are formed in an island shape and the counter electrode has a transparent property.
Abstract:
A metal hydroxide containing complex fiber, a metal oxide nanofiber and a manufacturing method thereof are provided to have the ultra-fine holes, thereby capable of using as various uses. A precursor containing metal ions is mixed with the high polymer resin solution so that the mixture solution containing metal hydroxide is prepared. The mixture solution is spun electrically so that the complex fiber containing the metal hydroxide and the high polymer resin is manufactured. The metal hydroxide is transformed into the metal oxide and then the high polymer fiber is sintered in order to remove the high polymer resin. The precursor containing metal ions is a metal salt or an organic metal compound including at least one metal selected from a group consisting of indium, tin, copper and zinc and the like. The precursor of 0.01 to 2 mol is mixed with the high polymer resin of 1 mol. The electric spun is performed by voltage of 5 to 10kV. Further, a plasticizing temperature of the complex fiber is 400-800°C.
Abstract:
A nano non-woven fabric containing an antioxidant for wound dressing is provided to improve close adhesion to the skin and air permeability, to prevent contamination by bacterial invasion, and to suppress the production of active oxygen. A nano non-woven fabric for wound dressing contains an antioxidant using a bio-compatible polymer impregnated with N-acetyl-L-cysteine(NAC) as a support. The NAC containing polymer solution having a concentration of 3-20g/dl is then applied to a nano non-woven fabric by electrospinning. Both synthetic polymers or natural polymers can be used as the bio-compatible polymer. Examples of such polymers include polyvinyl alcohol, polyethylene oxide, polyethylene glycol, PLA, PGA, collagen, gelatin, alginate, alginic acid, chitosan, etc.