Abstract:
PURPOSE: A quaternary zinc oxide thin film, a method for manufacturing the same, and an electronic device comprising the same are provided to obtain a quaternary zinc oxide thin film with bandgap energy of 3.7eV or greater and a low specific resistance of 10^-3Ωcm through co-doping of magnesium and group III elements. CONSTITUTION: A quaternary zinc oxide thin film comprises magnesium and one or more of group III elements consisting of indium, gallium, and aluminum. In order to implement co-doping, the doping concentration of magnesium is fixed while the doping concentration of the group III element is controlled. The resistance value of the group III element ranges from 10×10^-3Ωcm to 7×10^-4Ωcm. [Reference numerals] (AA) Generally used TCO material ·Low specific resistance ·Wide band-gap energy ·In is rare metal and too expensive ·Low chemical thermal stability; (BB) ZnO is an inexpensive material ·ZnO has low specific resistance ·Using ZnO doped with group III element primarily·Expressing superior optical, electric characteristics(3.5-3.6eV, 10^-4Ωcm); (CC) Mg is a generally used band-gap engineering element ·Band-gap energy(3.3eV-5.0eV) of an MZO thin film ·High specific resistance(10^5Ωcm); (DD) Band-gap arrangement problem of a TCO (3.5eV)/ZnS(3.65eV)/CIGS(1.5eV)/Mo structure ·Embodiment of UV-LED( 10^-4Ωcm) is necessary
Abstract:
PURPOSE: A copper-zinc-tin-sulfur-selenium(CZTSS)-based nano-particle precursor, a method for manufacturing the same, the CZTSS-based nano-particles using the same, and a method for manufacturing the nano-particles are provided to synthesize the CZTSS-based nano-particle precursor by hardly using toxic materials. CONSTITUTION: A CZTSS-based nano-particle precursor is synthesized by irradiating microwave to a reacting solution containing copper, zinc, tin, and sulfur. The composition ratio of the copper, the zinc, the tin, the sulfur is adjusted according to the pH value of the reacting solution. The microwave irradiation is implemented for 5 minutes to 1 hours under 100-700W. A method for manufacturing the CZTSS-based nano-particle precursor includes the following: the reacting solution is prepared; the pH value of the reacting solution is adjusted; the microwave is irradiated to the reacting solution. The CZTSS nano-particle precursor is separated.
Abstract:
본 발명은 CZTS 나노입자(Cu 2 ZnSnS 4 nano-particle) 제조방법에 관한 것으로, 보다 구체적으로는 독성물질을 사용하지 않고 Cu 2 ZnSnS 4 나노입자 전구체를 합성하는 제조방법, 그 방법으로 제조된 전구체 및 제조된 전구체를 황화 열처리 하여 고품질 Cu 2 ZnSnS 4 나노입자를 제조하는 방법 및 제조된 고품질 Cu 2 ZnSnS 4 나노입자에 관한 것이다.
Abstract:
본 발명은 산화아연(ZnO) 박막의 제조 및 그 박막의 표면 형상을 제어하는 방법에 관한 것으로, 보다 구체적으로는 수열합성법을 이용한 에피택셜 산화아연 박막의 성장과 그 박막이 형성된 기판이 존재하는 수열합성용 용액의 온도 조건 변화를 통해 제어된 표면 형상을 갖는 산화아연 박막의 제조방법을 제공한다. 본 발명의 제어된 표면 형상을 갖는 산화아연 박막 제조방법은 수열합성법과 수열합성용 용액의 온도 조건 변화를 이용함으로써, 저온에서 저가의 간단한 공정으로 잘 제어된 표면 형상을 갖는 산화아연 박막을 제조할 수 있는 효과를 제공한다. 또한, 본 발명의 제조방법에 의해 제조된 산화아연 박막은 결정성과 광학적 특성이 우수하여 태양전지와 발광다이오드(LED) 등의 광학소자에 투명 전도체를 제조하는 데에 응용할 수 있는 효과를 제공한다. 수열합성법, 산화아연 박막, 에피택셜 성장, 표면 형상 제어
Abstract:
PURPOSE: An optical absorption layer for a solar battery and a manufacturing method thereof are provided to improve reliability and yield by depositing SiO2 or the SiNx compound on a thin film through a PECVD(Plasma-Enhanced Chemical Vapor Deposition) method. CONSTITUTION: A predetermined amount of Se is deposited on a thin film according to composition ratio(S100). A protective layer is formed on the deposited Se(S200). The thin film is heat-treated(S300). The protective layer is removed by an etching process(S400). A ternary thin film includes CIS or CIGS. The protective layer is formed by depositing SiO2 or SiNx.
Abstract:
A light emitting diode having a micro lens is provided to realize excellent optical transmissivity and high adhesive property with respect to a substrate by forming the micro lens with an ultraviolet rays hardening adhesive agent. An N-type semiconductor layer(140), an active layer(150), and a P-type semiconductor layer(160) are sequentially laminated on a substrate(110). A part of the N-type semiconductor layer is exposed by removing a region from the P-type semiconductor layer to a part of the N-type semiconductor layer. An N-type electrode pad(190) is formed on an upper portion of the exposed N-type semiconductor layer. A transparent conductive layer is formed on an upper portion of the P-type semiconductor layer. A P-type electrode pad(180) is formed on an upper portion of the P-type semiconductor layer. Micro lenses made of an ultraviolet rays hardening adhesive agent are arranged on an upper portion of the transparent conductive layer.
Abstract:
A method for producing and separating high-purity oxygen and hydrogen from fossil fuel without emission of carbon dioxide is provided to minimize use of fossil fuel, produce high-purity oxygen and hydrogen, prevent air pollution by preventing carbon dioxide from emitting into the atmosphere, and minimize heat loss by performing all processes at high temperatures. A method for producing and separating high-purity oxygen and hydrogen from fossil fuel without emission of carbon dioxide comprises: a first step(S1) of reforming a fossil fuel by a steam reforming process, a partial oxidation process, or an automatic thermal process to prepare a mixed gas containing hydrogen, carbon dioxide, carbon monoxide, and water vapor; a second step(S2) of separating hydrogen from the mixed gas by using a hydrogen separation membrane to prepare a carbon dioxide-rich gas; a third step(S3) of separating oxygen from the carbon dioxide-rich gas by using an oxygen separation membrane to prepare a carbon monoxide-rich gas; and a fourth step(S4) of reacting the carbon monoxide-rich gas with water to prepare a residual gas having the same composition as the mixed gas prepared in the first step, wherein the steps(S1,S2,S3,S4) are circulated by supplying the residual gas prepared in the fourth step into the mixed gas of the second step.
Abstract:
공융용매를이용한구리칼코게나이드화합물의제조방법에관한것으로, 보다상세하게는단일포트콜로이드합성방법을적용하고공융용매를이용하여구리칼코게나이드화합물을제조하는제조방법이제공된다. 본발명은공정의편리성을제공하고무독성의저렴한시약을사용하여친환경적이며이로인해공정단가를낮을수 있다. 또한, 낮은전이온도를가지며공기와물에안정적인공융용매를사용하여구리칼코게나이드화합물을제조함에따라제조되는구리칼코게나이드나노입자는광전기, 물분해, 태양전지의조립및 나노잉크형성에사용될수 있다.