리튬이온 이차전지 음극소재용 시효처리 금속합금전극 및 이의 제조 방법
    21.
    发明公开
    리튬이온 이차전지 음극소재용 시효처리 금속합금전극 및 이의 제조 방법 无效
    在二次电池中老化金属合金电极的制备方法

    公开(公告)号:KR1020130127030A

    公开(公告)日:2013-11-22

    申请号:KR1020120049819

    申请日:2012-05-10

    Inventor: 신나리

    Abstract: The present invention relates to a method for manufacturing a lithium second battery, wherein the method includes a step of coating with tin and nickel alloy by flowing an electric current in tin and nickel ion solutions and forming metallic compounds by aging a current collector and alloy metal. When an alloy electrode processed with aging treatment is used, capacity increases even though cycle frequency increases at the same time, and the life span of the electrode is improved.

    Abstract translation: 锂二次电池的制造方法技术领域本发明涉及一种锂二次电池的制造方法,其特征在于,包括通过使锡和镍离子溶液流过电流而形成金属化合物,通过老化集电体和合金金属 。 当使用经时效处理的合金电极时,即使循环频率同时增加,容量也增加,并且电极的使用寿命得到改善。

    질화붕소 나노튜브의 열전도계수 측정방법
    22.
    发明公开
    질화붕소 나노튜브의 열전도계수 측정방법 无效
    测量BNNTS热膨胀系数的方法

    公开(公告)号:KR1020130120611A

    公开(公告)日:2013-11-05

    申请号:KR1020120043634

    申请日:2012-04-26

    Inventor: 신나리 조정민

    CPC classification number: G01N25/18 B82B1/00 Y10S977/70

    Abstract: The purpose of the present invention is to provide a method for measuring the thermal conductivity coefficient of boron nitride nanotube (BNNT), which is to measure a thermal conductivity coefficient, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the thermal conductivity coefficient of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model in temperature and pressure conditions for property calculation and by minimizing the total energy, and using a specimen cell obtained in this process for simulation; and calculating a thermal conductivity coefficient by making a difference between two sides of the specimen cell and by calculating the flow of energy on the both sides. [Reference numerals] (AA) Start;(BB) Set BNNT model;(CC) Optimize structure;(DD) Prepare simulation time slice;(EE) Calculate coefficient thermal conductivity;(FF) End

    Abstract translation: 本发明的目的是提供一种用于测量导热系数的氮化硼纳米管(BNNT)的热导率系数的方法,其用于测量机械性能中的重要性质,使用基于 关于分子动力学,没有任何直接的实验。 为了达到上述目的,本发明制备的BNNT的导热系数测定方法包括以下步骤:在基于基本原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过在温度和压力条件下稳定模型的体积来进行性质计算并通过使总能量最小化并使用在该过程中获得的样本池进行模拟来确定原子结构; 并且通过使样本池的两侧之间的差异和通过计算两侧的能量流量来计算导热系数。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟时间片;(EE)计算系数热导率;(FF)结束

    질화붕소 나노튜브의 전단계수 측정방법
    23.
    发明公开
    질화붕소 나노튜브의 전단계수 측정방법 无效
    测量BNNTS热膨胀系数的方法

    公开(公告)号:KR1020130120610A

    公开(公告)日:2013-11-05

    申请号:KR1020120043633

    申请日:2012-04-26

    Inventor: 신나리 조정민

    Abstract: The purpose of the present invention is to provide a method for measuring the shear modulus of boron nitride nanotube (BNNT), which is to measure a shear modulus, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the shear modulus of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model and minimizing the total energy in temperature and pressure conditions for property calculation, and using a specimen cell obtained in this process for simulation; and calculating energy by applying twisting moment to the specimen cell, and calculating the shear modulus of the specimen cell from the relationship between the energy and the angle of twisting. [Reference numerals] (AA) Start;(BB) Set a BNNT model;(CC) Optimize a structure;(DD) Prepare simulation test slice;(EE) Calculate a shear coefficient;(FF) End

    Abstract translation: 本发明的目的是提供一种测量氮化硼纳米管(BNNT)的剪切模量的方法,该方法是使用基于分子的模拟技术来测量机械性能之间的重要性质的剪切模量 动力学没有任何直接的实验。 为了达到上述目的,通过本发明制备的BNNT的剪切模量的测定方法包括以下步骤:在基于基本原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过稳定模型的体积并最小化用于性质计算的温度和压力条件下的总能量并使用在该过程中获得的样本池进行模拟来确定原子结构; 并通过对试样细胞施加扭转力矩来计算能量,并根据能量与扭转角度之间的关系来计算试样细胞的剪切模量。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟测试切片;(EE)计算剪切系数;(FF)结束

    질화붕소 나노튜브의 열팽창계수 측정방법
    24.
    发明公开
    질화붕소 나노튜브의 열팽창계수 측정방법 无效
    测量BNNTS热膨胀系数的方法

    公开(公告)号:KR1020130120608A

    公开(公告)日:2013-11-05

    申请号:KR1020120043629

    申请日:2012-04-26

    Inventor: 신나리 조정민

    CPC classification number: G01N25/16 B82B1/00 Y10S977/70

    Abstract: The purpose of the present invention is to provide a method for measuring the thermal expansion coefficient of boron nitride nanotube (BNNT), which is to measure a thermal expansion coefficient, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the thermal expansion coefficient of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model and minimizing the total energy in temperature and pressure conditions for property calculation, and using a specimen cell obtained in this process for simulation; and calculating stress by increasing the temperature of the specimen cell at a temperature range between 0 and 300 K, measuring changes in the length of the specimen cell, and calculating the thermal expansion coefficient of the specimen cell. [Reference numerals] (AA) Start;(BB) Set a BNNT model;(CC) Optimize a structure;(DD) Prepare simulation test slice;(EE) Calculate coefficient of expansion;(FF) End

    Abstract translation: 本发明的目的是提供一种用于测量热膨胀系数的氮化硼纳米管(BNNT)的热膨胀系数的方法,该热膨胀系数是机械性能中的重要性质,使用基于 关于分子动力学,没有任何直接的实验。 为了达到上述目的,本发明制备的BNNT的热膨胀系数的测定方法包括以下步骤:在基于碱性原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过稳定模型的体积并最小化用于性质计算的温度和压力条件下的总能量并使用在该过程中获得的样本池进行模拟来确定原子结构; 并通过在0〜300K的温度范围内增加试样池的温度来计算应力,测定试样池长度的变化,计算试样池的热膨胀系数。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟测试切片;(EE)计算膨胀系数;(FF)结束

    질화붕소 나노튜브의 탄성계수 측정방법
    25.
    发明公开
    질화붕소 나노튜브의 탄성계수 측정방법 无效
    测量BNNTS弹性模量的方法

    公开(公告)号:KR1020130120607A

    公开(公告)日:2013-11-05

    申请号:KR1020120043628

    申请日:2012-04-26

    Inventor: 신나리 조정민

    Abstract: The purpose of the present invention is to provide a method for measuring the elastic modulus of boron nitride nanotube (BNNT), which is to measure an elastic modulus, which is an important property among mechanical properties, using a simulation technique which is based on molecular dynamics without any direct experiment. To achieve the purpose above, the method for measuring the elastic modulus of BNNT prepared by the present invention comprises the following steps of: setting a BNNT model into a simulation cell after setting the BNNT model based on a basic atomic structure; determining an atomic structure by minimizing the inner energy of the model due to interaction force between boron and nitrogen atoms; determining an atomic structure by stabilizing the volume of the model and minimizing the total energy in temperature and pressure conditions for property calculation, and using a specimen cell obtained in this process for simulation; and calculating stress by applying displacement to the specimen cell in a desired direction and measuring the elastic modulus of the specimen cell. [Reference numerals] (AA) Start;(BB) Set a BNNT model;(CC) Optimize a structure;(DD) Prepare simulation test slice;(EE) Calculate elastic modulus;(FF) End

    Abstract translation: 本发明的目的是提供一种用于测量弹性模量的氮化硼纳米管(BNNT)的弹性模量的方法,该弹性模量是机械性能之间的重要性质,使用基于分子的模拟技术 动力学没有任何直接的实验。 为了达到上述目的,本发明制备的BNNT的弹性模量测定方法包括以下步骤:在基于基本原子结构设定BNNT模型之后,将BNNT模型设定为模拟单元; 通过使由于硼和氮原子之间的相互作用力而使模型的内部能量最小化来确定原子结构; 通过稳定模型的体积并最小化用于性质计算的温度和压力条件下的总能量并使用在该过程中获得的样本池进行模拟来确定原子结构; 并且通过在所需方向上向样品池施加位移并测量样品池的弹性模量来计算应力。 (AA)开始;(BB)设置BNNT模型;(CC)优化结构;(DD)准备模拟测试切片;(EE)计算弹性模量;(FF)结束

    리튬공기전지용 양극전극
    26.
    发明授权
    리튬공기전지용 양극전극 有权
    锂电池正极

    公开(公告)号:KR101646357B1

    公开(公告)日:2016-08-05

    申请号:KR1020140141476

    申请日:2014-10-20

    CPC classification number: Y02E60/128

    Abstract: 본발명은리튬공기전지에관한것으로, 리튬공기전지에 CNT섬유를직물혹은매시형태로기공을갖는양극전극으로서, 기공이큰 위층의제1전극과; 상대적으로기공이작은아래층의제2전극으로이루어짐과아울러, 상기제1전극의기공크기는 15㎛이고, 상기제2전극의기공크기는 12㎛로형성된리튬공기전기용양극전극을제공함으로써, 모세관형상에따른전해액의함습도를극대화할수 있으며, 이에따라종래에비해방전용량이더욱증가되는효과를기대할수 있다.

    리튬공기전지용 바이폴라 집전체, 이의 제조방법, 및 이를 포함하는 리튬공기전지
    27.
    发明公开
    리튬공기전지용 바이폴라 집전체, 이의 제조방법, 및 이를 포함하는 리튬공기전지 无效
    用于锂离子电池的双极电流收集器,其生产方法和包含IT的立式电池

    公开(公告)号:KR1020160071799A

    公开(公告)日:2016-06-22

    申请号:KR1020140179398

    申请日:2014-12-12

    Abstract: 본발명은리튬공기전지용바이폴라집전체, 이의제조방법, 및이를포함하는리튬공기전지에관한것으로써, 보다상세하게는기판, TiO나노와이어및 공기유로를포함하는리튬공기전지용바이폴라집전체및 이의제조방법을제공하여상기집전체가전해액에의해부식되지않아고장의위험이적고, 상기집전체의두께및 무게를감소시킬수 있어전지전체중량당/부피당에너지밀도가향상되며, 양극활물질인공기가원활하게양극에유입될수 있어방전용량이향상된리튬공기전지를제공하고자하는것이다.

    Abstract translation: 本发明涉及一种锂空气电池用双极型集电体及其制造方法以及具备该锂电池的锂空气电池。 更具体地,所提供的用于锂空气电池的双极集电器包括:基板; TiO_2纳米线; 和空气流路。 集电器不被电解质腐蚀,因此几乎没有破坏的风险。 此外,可以减小集电体的厚度和重量,从而提高每个电池总重量/体积的能量密度,并且可以将作为阴极活性材料的空气平滑地引入阴极,由此锂空气电池 具有改善放电容量。

    리튬공기전지용 글라임계 이온성 액체 전해질 조성물
    28.
    发明公开
    리튬공기전지용 글라임계 이온성 액체 전해질 조성물 有权
    GLYME液体电解质组合物用于锂离子空气可再充电

    公开(公告)号:KR1020160071200A

    公开(公告)日:2016-06-21

    申请号:KR1020140178626

    申请日:2014-12-11

    Abstract: 본발명은리튬공기전지용글라임계이온성액체전해질조성물에관한것으로, 보다상세하게는글라임계이온성액체에점도가낮은에테르계용매를혼합하여전해질조성물을제조함으로써점도를낮추어방전용량및 가역효율을증대시켜충방전의전지효율을향상시킬수 있는리튬공기전지용글라임계이온성액체전해질조성물에관한것이다.

    Abstract translation: 本发明涉及一种用于锂空气电池的基于甘醇醛的离子液体电解质组合物。 更具体地,本发明涉及一种用于锂空气电池的甘醇醛类离子液体电解质组合物,其通过在基于甘醇二甲醚的离子液体中混合低粘度的醚类溶剂来制造电解质组合物,从而提高电池的充电效率 并通过增加放电容量和可逆效率放电。

    이차전지용 집전체
    29.
    发明授权

    公开(公告)号:KR101519711B1

    公开(公告)日:2015-05-12

    申请号:KR1020130049828

    申请日:2013-05-03

    Abstract: 본 발명은, 리튬-황 전지에 있어서, 양극 황 전극의 알루미늄 집전체 및 음극 리튬 전극의 구리 집전체는 노듈 형태인 것인 리튬-황 전지를 제공한다.
    또한 본 발명은, 리튬-황 전지의 제조 방법에 있어서, 알루미늄 또는 구리를 용해하는 단계, 전기도금을 이용하여 알루미늄 또는 구리 박막을 제조하는 단계 및 박막 표면 처리시 패턴을 제어하여 노듈의 크기를 지정하는 단계를 포함하는 것인 리튬-황 전지의 제조방법을 제공한다.

    리튬황 전지의 전해질
    30.
    发明公开
    리튬황 전지의 전해질 无效
    用于锂硫电池的电解液

    公开(公告)号:KR1020150004179A

    公开(公告)日:2015-01-12

    申请号:KR1020130077322

    申请日:2013-07-02

    Abstract: 본 발명은 리튬황 전지의 전해질로 이용되는 고분자 화합물에 관한 것이며, 더욱 상세하게는 디메틸 에테르를 이용하는 것에 관한 것이다.

    Abstract translation: 本发明涉及用作锂硫电池的电解质的高分子化合物,更具体地说,涉及使用二甲醚。 本发明的目的是提供一种用于锂硫电池的新型电解质,其中加入提高DME的点火点的环丁砜。 为此,锂硫电池的电解质组合物包括:负极(阳极),其包含负极活性物质; 包含硫或硫化合物作为正极活性物质的正极(阴极) 和液体或凝胶电解质溶液。

Patent Agency Ranking