Abstract:
An immersion lithographic projection apparatus is disclosed in which liquid is provided between a projection system of the apparatus and a substrate. The use of both liquidphobic and liquidphilic layers on various elements of the apparatus is provided to help prevent formation of bubbles in the liquid and to help reduce residue on the elements after being in contact with the liquid.
Abstract:
A porous member is used in a liquid removal system of an immersion lithographic projection apparatus to smooth uneven flows. A pressure differential across the porous member may be maintained at below the bubble point of the porous member so that a single-phase liquid flow is obtained. Alternatively, the porous member may be used to reduce unevenness in a two-phase flow.
Abstract:
A lithographic apparatus is disclosed including a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, an outlet configured to remove a mixture of liquid and gas passing through a gap between a liquid confinement structure of the liquid supply system and the substrate, and an evacuation system configured to draw the mixture through the outlet, the evacuation system having a separator tank arranged to separate liquid from gas in the mixture and a separator tank pressure controller, connected to a non-liquid-filled region of the separator tank, configured to maintain a stable pressure within the non-liquid-filled region.
Abstract:
Liquid is supplied to a space between the projection system and the substrate by an inlet. In an embodiment, an overflow region removes liquid above a given level. The overflow region may be arranged above the inlet and thus the liquid may be constantly refreshed and the pressure in the liquid may remain substantially constant.
Abstract:
A lithographic projection apparatus is disclosed in which a space between the projection system and the substrate is filled with a liquid. An edge seal member at least partly surrounds the substrate or other object on a substrate table to prevent liquid loss when edge portions of the substrate or other object are, for example, imaged or illuminated. A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to provide liquid to a space between the projection system and the substrate; and a shutter configured to isolate the space from the substrate or a space to be occupied by a substrate.
Abstract:
A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to provide liquid to a space between the projection system and the substrate; and a shutter configured to isolate the space from the substrate or a space to be occupied by a substrate.
Abstract:
A lithographic apparatus comprising: a positioning stage (WT); an isolation frame (300); a projection system (PS), comprising a first frame (210); a second frame (220); a supporting frame (10) for supporting the positioning stage; a first vibration isolation system (250) and a second vibration isolation system (270), wherein the supporting frame and the first frame are coupled via the first vibration isolation system; a stage position measurement system (400) to determine directly the position of a stage reference of an element of the positioning stage in one or more degrees of freedom with respect to an isolation frame reference of an element of the isolation frame; and wherein the first frame and the isolation frame are coupled via the second vibration isolation system.
Abstract:
Liquid is supplied to a space between the projection system and the substrate by an inlet. In an embodiment, an overflow region removes liquid above a given level. The overflow region may be arranged above the inlet and thus the liquid may be constantly refreshed and the pressure in the liquid may remain substantially constant.
Abstract:
A gas knife configured to dry a surface in an immersion lithographic apparatus is optimized to remove liquid by ensuring that a pressure gradient is built up in the liquid film on the surface being dried.