Abstract:
A method of inspecting a sample at high speed includes directing and focusing radiation onto a sample, and receiving radiation from the sample and directing received radiation to an image sensor. Notably, the method includes driving the image sensor with predetermined signals. The predetermined signals minimize a settling time of an output signal of the image sensor. The predetermined signals are controlled by a phase accumulator, which is used to select look-up values. The driving can further include loading an initial phase value, selecting most significant bits of the phase accumulator, and converting the look-up values to an analog signal. In one embodiment, for each cycle of a phase clock, a phase increment can be added to the phase accumulator. The driving can be performed by a custom waveform generator.
Abstract:
A photomultiplier tube includes a semiconductor photocathode and a photodiode. Notably, the photodiode includes a p-doped semiconductor layer, an n-doped semiconductor layer formed on a first surface of the p-doped semiconductor layer to form a diode, and a pure boron layer formed on a second surface of the p-doped semiconductor layer. A gap between the semiconductor photocathode and the photodiode may be less than about 1 mm or less than about 500 μm. The semiconductor photocathode may include gallium nitride, e.g. one or more p-doped gallium nitride layers. In other embodiments, the semiconductor photocathode may include silicon. This semiconductor photocathode can further include a pure boron coating on at least one surface.
Abstract:
A mode-locked laser system operable at low temperature can include an annealed, frequency-conversion crystal and a housing to maintain an annealed condition of the crystal during standard operation at the low temperature. In one embodiment, the crystal can have an increased length. First beam shaping optics can be configured to focus a beam from a light source to an elliptical cross section at a beam waist located in or proximate to the crystal. A harmonic separation block can divide an output from the crystal into beams of different frequencies separated in space. In one embodiment, the mode-locked laser system can further include second beam shaping optics configured to convert an elliptical cross section of the desired frequency beam into a beam with a desired aspect ratio, such as a circular cross section.
Abstract:
A deep ultra-violet (DUV) continuous wave (CW) laser includes a fundamental CW laser configured to generate a fundamental frequency with a corresponding wavelength between about 1 μm and 1.1 μm, a third harmonic generator module including one or more periodically poled non-linear optical (NLO) crystals that generate a third harmonic and an optional second harmonic, and one of a fourth harmonic generator module and a fifth harmonic generator. The fourth harmonic generator module includes a cavity resonant at the fundamental frequency configured to combine the fundamental frequency with the third harmonic to generate a fourth harmonic. The fourth harmonic generator module includes either a cavity resonant at the fundamental frequency for combining the fundamental frequency with the third harmonic to generate a fifth harmonic, or a cavity resonant at the second harmonic frequency for combining the second harmonic and the third harmonic to generate the fifth harmonic.
Abstract:
A laser for generating an output wavelength of approximately 193.4 nm includes a fundamental laser, an optical parametric generator, a fourth harmonic generator, and a frequency mixing module. The optical parametric generator, which is coupled to the fundamental laser, can generate a down-converted signal. The fourth harmonic generator, which may be coupled to the optical parametric generator or the fundamental laser, can generate a fourth harmonic. The frequency mixing module, which is coupled to the optical parametric generator and the fourth harmonic generator, can generate a laser output at a frequency equal to a sum of the fourth harmonic and twice a frequency of the down-converted signal.
Abstract:
System and methods for process aware metrology are provided. The method compries the steps of selecting nominal values and one or more different values of process parameters for one or more process steps used to form the structure on the wafer, simulating one or more characteristics of the structure that would be formed on the wafer using the nominal values, generating an initial model of the structure based on results of the simulating step, simulating the one or more characteristic of the structure that would be formed on the wafer using the one or more different values as input to the initial model, translating results of both of the simulating steps into the optical model of the structure, and determining parameterization of the optical model based on how the one or more characteristics of the structure vary between at least two of the nominal values and the one or more different values.
Abstract:
Illumination subsystems of a metrology or inspection system, metrology systems, inspection systems, and methods for illuminating a specimen for metrology measurements or for inspection are provided.
Abstract:
A cell for a vacuum ultraviolet plasma light source, the cell having a closed sapphire tube containing at least one noble gas. Such a cell does not have a metal housing, metal-to-metal seals, or any other metal flanges or components, except for the electrodes (in some embodiments). In this manner, the cell is kept to a relatively small size, and exhibits a more uniform heating of the gas and cell than can be readily achieved with a hybridized metal/window cell design. These designs generally result in higher plasma temperatures (a brighter light source), shorter wavelength output, and lower optical noise due to fewer gas convection currents created between the hotter plasma regions and surrounding colder gases. These cells provide a greater amount of output with wavelengths in the vacuum ultraviolet range than do quartz or fused silica cells. These cells also produce continuous spectral emission well into the infrared range, making them a broadband light source.
Abstract:
A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the second boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel electron-bombarded charge-coupled device (EBCCD) sensors and inspection systems.