Abstract:
An early interrupt feature enables generation of interrupts prior to completion of an analog-to-digital conversion to be used in a processor PID calculation. Even though an analog-to-digital conversion is still in process, the PID application software can use the early interrupt time to begin execution of an interrupt service routine (ISR). The early interrupt can improve the throughput and response time of the PID control loop by overlapping the completion of the ADC conversion with the processor overhead associated with the interrupt request. A plurality of pipelined registers, each having substantially the same delay time as the pipelined stages of the ADC, are selectable to provided a delay time that may be used to generate an early interrupt, wherein the latency time between an ADC conversion and processing of an interrupt relating to that ADC conversion may thereby be shortened.
Abstract:
Multi-phase, frequency coherent pulse width modulation (PWM) signals are generated that maintain PWM data-set coherency regardless of user or system events, PWM data-set coherency is accomplished by adding data buffers to hold and transfer new PWM data during a data-set update from a processor. After the data-set transfer to the data buffers is complete and when the next PWM cycle is about to start, the data-set stored in the data buffers is transferred to the active PWM registers in time for the start of the next PWM cycle.
Abstract:
A plurality of power supply modules having their outputs coupled in parallel are controlled for load balancing purposes through a digital communications channel. The digital communications channel may be a wired digital serial or parallel bus, and/or a wireless digital communications channel such as Bluetooth, infrared, etc. Each of the plurality of power supply modules may broadcast their respective output currents and all of the plurality of power supply modules may determine a total current supplied to a load and thereby determine an appropriate output voltage for proportionally contributing to the total current.
Abstract:
A microcontroller device has a housing with a plurality of external pins. a first microcontroller with a first central processing unit (CPU), a first system bus coupled with the first CPU, first memory coupled with the first system bus, and a first plurality of peripheral devices coupled with the first system bus, and a second microcontroller with a second central processing unit (CPU), a second system bus coupled with the second CPU, second memory coupled with the second system bus, and a second plurality of peripheral devices coupled with the second system bus, wherein first and second microcontroller communicate only via a dedicated interface.
Abstract:
A microcontroller device has a housing with a plurality of external pins having a plurality of input/output pins, a first microcontroller with a first central processing unit (CPU), a first system bus coupled with the first CPU, first memory coupled with the first system bus, and a first plurality of peripheral devices coupled with the first system bus, a second microcontroller with a second central processing unit (CPU), a second system bus coupled with the second CPU, second memory coupled with the second system bus, and a second plurality of peripheral devices coupled with the second system bus, and a pad ownership multiplexer unit being controllable to assign control of the input/output pins to either the first microcontroller or the second microcontroller, wherein the number of external pins is less than the sum of a data bus width of the first and second microcontroller.
Abstract:
A plurality of PWM generators have user configurable time delay circuits for each PWM control signal generated therefrom. The time delay circuits are adjusted so that each of the PWM control signals arrive at their associated power transistors at the same time. This may be accomplished by determining a maximum delay time of the PWM control signal that has to traverse the longest propagation time and then setting the delay for that PWM control signal to substantially zero delay. Thereafter, all other delay time settings for the other PWM control signals may be determined by subtracting the propagation time for each of the other PWM control signals from the longest propagation time. Thereby insuring that all of the PWM control signals arrive at their respective power transistor control nodes with substantially the same time relationships as when they left their respective PWM generators.
Abstract:
Groups of phase shifted PWM signals are generated that maintain their duty-cycle and phase relationships as a function of the period of the PWM signal frequency. The multiphase PWM signals are generated in a ratio-metric fashion so as to greatly simplify and reduce the computational workload for a processor used in a PWM system. The groups of phase shifted PWM signals may also be synchronized with and automatically scaled to match external synchronization signals.
Abstract:
A slope compensation module provides slope compensation of a switched-mode power supply using current mode control. This slope compensation function may be provided by a digital slope compensation generator and a pulse density modulated digital-to- analog converter (PDM DAC) having a selectable response mode low pass filter.
Abstract:
A plurality of pulse width modulation (PWM) generators are provided, each having a separate phase offset counter to create a phase shift instead of using either a time base counter preload value or an adder to create the phase shift offset relative to the PWM time base and the duty cycle. The phase shifting process is separated from the duty cycle generation process, thereby easing the task of preserving the duty cycle and phase relationships among the various PWM channels following an asynchronous external synchronization event. At least one master time base generates a PWM cycle start signal that resets the phase offset counters in each of the PWM generator circuits. The phase offset counter continues counting until it matches the respective phase offset value. At that time, the associated duty cycle counter is reset and restarted. The duty cycle continues until its count matches the specified duty cycle value at which time the duty cycle counter stops until reset by the terminal count from the phase offset counter. The output of the duty cycle comparators provide the output PWM signals as a repetitive series of single cycle PWM signals.
Abstract:
A "quasi-master-time-base" circuit is used to periodically resynchronize the individual PWM generators to a know reference signal. This quasi-master-time-base will be at the lowest frequency relative to all of the PWM output frequencies, wherein all of the PWM output frequencies are at the same frequency or at an integer multiple frequency(ies) of the quasi-master frequency. This "quasi-master-time-base" circuit allows for minor timing errors due to user PWM configuration errors and/or update errors, and still yields stable PWM signal outputs that remain synchronized to each other.