Abstract:
An integrated circuit (100, 200, 300, 400) that includes a field effect transistor (102, 202, 302, 402) is fabricated by forming an organic semiconductor channel (112, 216, 308, 418) on one substrate (106, 204), forming device electrodes (114, 116, 110, 208, 210, 212) on one or more other substrates (104, 108, 206), and subsequently laminating the substrates together. In one embodiment, a dielectric patch (214) that functions as a gate dielectric is formed on one of the substrates (204, 206) prior to performing the lamination. Lamination provides a low cost route to device assembly, allows for separate fabrication of different device structures on different substrates, and thins various device layers resulting in improved performance.
Abstract:
An organic field effect transistor utilizes a bifunctional contact-enhancing agent at various interfaces to improve carrier mobility through the organic semiconductor layer, to improve carrier injection, and to enhance adhesion via a bifunctional mechanism. The contact-enhancing agent can be situated between the gate electrode (2) and the dielectric layer (3) to form a chemical or physical bond between the gate electrode and the dielectric layer. It can also be situated between the dielectric layer and the organic semiconducting layer (4), or between the source and drain electrodes (5, 6) and the organic semiconducting layer.
Abstract:
An organic field effect transistor utilizes a bifunctional contact-enhancing agent at various interfaces to improve carrier mobility through the organic semiconductor layer, to improve carrier injection, and to enhance adhesion via a bifunctional mechanism. The contact-enhancing agent can be situated between the gate electrode (2) and the dielectric layer (3) to form a chemical or physical bond between the gate electrode and the dielectric layer. It can also be situated between the dielectric layer and the organic semiconducting layer (4), or between the source and drain electrodes (5, 6) and the organic semiconducting layer.
Abstract:
An organic field effect transistor utilizes a bifunctional contact-enhancing agent at various interfaces to improve carrier mobility through the organic semiconductor layer, to improve carrier injection, and to enhance adhesion via a bifunctional mechanism. The contact-enhancing agent can be situated between the gate electrode (2) and the dielectric layer (3) to form a chemical or physical bond between the gate electrode and the dielectric layer. It can also be situated between the dielectric layer and the organic semiconducting layer (4), or between the source and drain electrodes (5, 6) and the organic semiconducting layer.
Abstract:
An organic field effect transistor utilizes a bifunctional contact-enhancing agent at various interfaces to improve carrier mobility through the organic semiconductor layer, to improve carrier injection, and to enhance adhesion via a bifunctional mechanism. The contact-enhancing agent can be situated between the gate electrode (2) and the dielectric layer (3) to form a chemical or physical bond between the gate electrode and the dielectric layer. It can also be situated between the dielectric layer and the organic semiconducting layer (4), or between the source and drain electrodes (5, 6) and the organic semiconducting layer.
Abstract:
An integrated circuit (100, 200, 300, 400) that includes a field effect transistor (102, 202, 302, 402) is fabricated by forming an organic semiconductor channel (112, 216, 308, 418) on one substrate (106, 204), forming device electrodes (114, 116, 110, 208, 210, 212) on one or more other substrates (104, 108, 206), and subsequently laminating the substrates together. In one embodiment, a dielectric patch (214) that functions as a gate dielectric is formed on one of the substrates (204, 206) prior to performing the lamination. Lamination provides a low cost route to device assembly, allows for separate fabrication of different device structures on different substrates, and thins various device layers resulting in improved performance.
Abstract:
An integrated circuit (100, 200, 300, 400) that includes a field effect transistor (102, 202, 302, 402) is fabricated by forming an organic semiconductor channel (112, 216, 308, 418) on one substrate (106, 204), forming device electrodes (114, 116, 110, 208, 210, 212) on one or more other substrates (104, 108, 206), and subsequently laminating the substrates together. In one embodiment, a dielectric patch (214) that functions as a gate dielectric is formed on one of the substrates (204, 206) prior to performing the lamination. Lamination provides a low cost route to device assembly, allows for separate fabrication of different device structures on different substrates, and thins various device layers resulting in improved performance.