Abstract:
Elevator cabs A-C move upwardly through three or more contiguous overlapping hoistways 38-40 in the upper decks of double deck car frames 41-43, and move downwardly through the hoistways in the lower decks (or vice versa). To switch between decks, the cabs are offloaded from the hoistways into auxiliary elevators 50, 51 at the terminal ends of the shuttle, and are moved to be adjacent to the other deck by the auxiliary elevator and loaded thereon for the trip in the opposite direction. A second embodiment has additional auxiliary elevators 64, 65 and additional cabs D, E so that loading and unloading of passengers do not delay movement of the cabs in the hoistways.
Abstract:
To prevent elevator rope stretch effects when a horizontally transferable elevator cab (18) is rolled onto and off of an elevator car frame (10), an elevator car/floor lock (31) includes a bolt which extends across the interface between the car frame and the building and engages a strike. Jack screw and solenoid embodiments are shown. The bolt may extend from the car frame to the building (Figs. 1-4) or from the building to the car frame (Fig. 5).
Abstract:
A first slidable auxiliary pinion (58a) on the bottom of a horizontally moveable elevator cab A disposed on a car frame (14) or a landing is moved out from under the cab toward another car frame (13) or landing by means of a motorized pinion (56) until it engages a motorized pinion (57) on the adjacent car frame (13) or landing, which then pulls the auxiliary pinion and the entire cab toward the other car frame or landing until a main rack (45) fixed to the bottom of the cab engages a motorized pinion (34) on the other car frame (13) or landing, which pinion then pulls the entire cab onto the other car frame or landing. The auxiliary racks (58a, 58b) may be mounted on a common auxiliary rack member (58), or may be separate. The auxiliary motorized pinions (55, 56, 57) may be bidirectional, or may be unidirectional and mounted on the same shaft with main pinions (32a, 32c; 33a, 33c; 34a, 34c).
Abstract:
A particular elevator is commandeered to transfer an emergency cab F to (or near) a floor where an alarm has been sounded. The commandeered car is brought to the floor FF where the emergency cab is parked. The fire cab is exchanged for the normal cab C on the commandeered car, and is then carried to (or near) the alarm floor for responding to the alarm. Passengers in the normal cab may exit through landing doorways (23). Emergency personnel have access to the alarm area through emergency hoistway doors (27). A rack and pinion horizontal motive means for moving the cabs is illustrated.
Abstract:
In one embodiment, fuzzy sets D1-D6 indicative of the degree to which the time since the last passenger boarded an escalator can be deemed to be zero, a very long time, or something in between, are combined with fuzzy sets E1-E6 indicative of the extent to which the maximum number of passengers in a recent temporal or cyclic period can be deemed to be a zero passenger, a very large group, or something in between. In another embodiment, fuzzy sets indicative of the degree to which the time since the last passenger exited an empty escalator can be deemed to be nearly zero, a very long time, or something in between, are combined with fuzzy sets indicative of the degree to which the maximum group of passengers on the escalator at any time the last time it was empty can be deemed to be a single passenger, a very large group, or something in between. T-norms (functions for combining the pair of fuzzy sets) are used to select recommended target speeds; weighted averaging of more than one recommended target speed is used to defuzzify the result to achieve an ultimate target speed, except in the second embodiment, which tailors the speed of the escalator to the current traffic level where the target speed is always maximum if the escalator is occupied and which judiciously slows an empty escalator.
Abstract:
In one embodiment, fuzzy sets D1-D6 indicative of the degree to which the time since the last passenger boarded an escalator can be deemed to be zero, a very long time, or something in between, are combined with fuzzy sets E1-E6 indicative of the extent to which the maximum number of passengers in a recent temporal or cyclic period can be deemed to be a zero passenger, a very large group, or something in between. In another embodiment, fuzzy sets indicative of the degree to which the time since the last passenger exited an empty escalator can be deemed to be nearly zero, a very long time, or something in between, are combined with fuzzy sets indicative of the degree to which the maximum group of passengers on the escalator at any time the last time it was empty can be deemed to be a single passenger, a very large group, or something in between. T-norms (functions for combining the pair of fuzzy sets) are used to select recommended target speeds; weighted averaging of more than one recommended target speed is used to defuzzify the result to achieve an ultimate target speed, except in the second embodiment, which tailors the speed of the escalator to the current traffic level where the target speed is always maximum if the escalator is occupied and which judiciously slows an empty escalator.
Abstract:
The present invention is directed to notifying a user of an arriving elevator car in response to a hall call registered by the user, wherein notification occurs a threshold time value before elevator car arrival. In the preferred embodiment, an elevator car is assigned to a floor in response to a hall call. The amount of time required for the assigned elevator car to arrive at the floor is determined and compared with the threshold time value. If the arrival time is greater than the threshold time value, the system reexamines assignment, possibly reassigning a different elevator car to respond to the hall call. The arrival time of the assigned (or newly assigned) elevator car is again determined, and this process continues until the arrival time is less than or equal to the threshold time value. When the arrival time is less than or equal to the threshold time value, the hall lantern at the door of the assigned elevator car is energized, e.g., illuminated and/or sounded. Additionally, the hall call is removed from further consideration regarding reassignment to another elevator car, thereby fixing the elevator car assignment. In the preferred embodiment, the threshold time value can be a constant value determined by, e.g., the building manager. Alternatively, the threshold time value can be variable by the system, e.g., based on the intensity of the traffic as measured by user waiting time or user boarding and/or deboarding rates, whether actual or predicted.
Abstract:
An elevator control system employing a micro-processor-based group controller ( Fig. 2 ) which communicates with the cars of the elevator system to determine conditions of the cars and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, to provide assignments of the hall calls to the cars based on a weighted summation for each car, wi h reapect to each call, of a plurality of system response factors, some indicative, and some not, of conditions of the car irrespective of the call to be assigned, assigning "bonuses" and "penalties" to them in the weighted summation. In the invention, rather than a set of unvarying bonuses and penalties being assigned based on the relative system response factors, the assigned bonuses and penalties are varied (4,6) based on the perceived intensity of traffic, as measured (3,5) by, for example, a past average waiting time and the elapsed time since registration of the hall call, a selected past five minute average waiting time being exemplary.