Abstract:
Carrier aggregation (CA) may cause interference between operation on two or more carriers within a user equipment (UE). This interference can degrade signal quality on one or more of the carriers involved in the carrier aggregation, which may be referred to as "desensing" one or more carriers. One or more isolating buffers may be coupled at a down-conversion mixer at a point where the down-conversion mixer receives a signal from a transmission line for isolating the transmission line from other transmission lines. The isolating buffer may reduce the effect of interference between multiple transmission lines carrying different carriers during carrier aggregation (CA) operation. The isolating buffers may be used in an RF transceiver supporting both 5G sub-7 GHz and 5G mmWave wireless networks and carrier aggregation across sub-7 GHz and mmWave bands.
Abstract:
An aspect relates to a filter or a first gyrator including a first set of cascaded inverters, and a first set of one or more passive devices coupled to the first set of cascaded inverters. Another aspect relates to a method including applying an input signal to an input of a first one of a set of cascaded inverters coupled to a set of one or more passive devices, and receiving an output signal from the set of cascaded inverters, the output signal being a filtered version of the input signal. Still another aspect relates to a transceiver including a filter with a first set of cascaded inverters, and a first set of one or more passive devices coupled to the first set of cascaded inverters; and a mixer coupled to the filter.
Abstract:
A reconfigurable filter circuit has a first path including a transimpedance amplifier (TIA). The transimpedance amplifier has an input that receives an input current and an output that outputs a voltage. The reconfigurable filter circuit also includes a switchable feedback path. The switchable feedback path includes a first low-pass filter coupled to an output of the TIA. The switchable feedback path also includes a first switch to couple the feedback path to provide a feedback current to the first path resulting in a bandpass response in the output voltage when the switch is closed and a low-pass response in the output voltage when the switch is open.
Abstract:
A carrier aggregation diversity antenna module with integrated low noise amplifier banks is disclosed. In an exemplary embodiment, an apparatus includes at least one switch configured to establish a transmit signal path to transmit an uplink signal from at least one diversity antenna and to establish a receive signal path to receive downlink diversity signals from the at least one diversity antenna. The apparatus also includes band selection filters configured to filter the downlink diversity signals to generate at least three diversity band signals. The apparatus also includes a multiplexing amplifier configured to amplify the diversity band signals to generate at least three amplified diversity band signals that are output to a transceiver.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for dynamically adjusting a voltage-controlled oscillator (VCO) frequency, a local oscillator (LO) divider ratio, and/or a receive path when adding or discontinuing reception of a component carrier (CC) in a carrier aggregation (CA) scheme. This dynamic adjustment is utilized to avoid (or at least reduce) VCO, LO, and transmit signal coupling issues with multiple component carriers, with minimal (or at least reduced) current consumption by the VCO and the LO divider.
Abstract:
Amplifiers with multiple outputs and separate gain control per output are disclosed. In an exemplary design, an apparatus (e.g., a wireless device or an integrated circuit) may include first (640) and second (660) amplifier circuits. The first amplifier circuit (640) may receive and amplify an input radio frequency, RF, signal (RFin) based on a first variable gain and provide a first amplified RF signal (RFampl). The second amplifier circuit (660) may receive and amplify the input RF signal (RFin) based on a second variable gain and provide a second amplified RF signal (RFamp2). The input RF signal may include a plurality of transmitted signals being received by the wireless device. The first variable gain may be adjustable independently of the second variable gain. Each variable gain may be set based on the received power level of at least one transmitted signal being received by the wireless device.
Abstract:
Embodiments of this disclosure may include a receiver with a reconfigurable processing path for different signal conditions. Such a receiver may reconfigure between a mixer-first configuration and an amplifier-first configuration. In the mixer-first configuration, an RF input signal is not passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. In the amplifier-first configuration, an RF input signal is passed through an LNA for amplification before processing the RF input signal for downconversion to baseband and eventual extraction of the information in the signal. Reconfiguring the receiver between mixer-first and amplifier-first configurations may be performed based on detection of jammer signals and/or measurement of signal-to-noise ratio (SNR).
Abstract:
The disclosure relates to an apparatus including a receiver configured to process a radio frequency (RF) signal to generate a baseband signal; a radio frequency (RF) jammer detector configured to generate a signal indicative of whether an RF jammer is present at an input of the receiver; and a receiver bias circuit configured to generate a supply voltage for the receiver based on the RF jammer indication signal. In another aspect, the apparatus includes constant gain bias circuit to maintain the gain of the receiver constant in response to changes in the supply voltage. In other aspects, the receiver bias circuit may suspend the generating of the supply voltage based on the RF jammer indication signal if the power level of the target received signal is above a threshold. In other aspects, the receiver bias circuit changes the supply voltage during cyclic prefix (CP) intervals between downlink intervals.
Abstract:
A method and apparatus are disclosed for a configurable mixer capable of operating in a linear, a legacy, and a low-power mode. In the linear mode, the configurable mixer is configured to operate as a double-balanced mixer to multiply a first differential signal by a second differential signal. In the legacy mode, the configurable mixer is configured to as a double-balanced mixer to multiply a differential signal by a single-ended signal. In the low-power mode, the configurable mixer is configured to operate as a single-balanced mixer to multiply a differential signal by a single-ended signal. The operating mode of the configurable mixer may be based, at least in part, on a mode control signal. In some embodiments, the configurable mixer may be included in an analog front end of a wireless communication device.
Abstract:
An apparatus includes an auxiliary mixing path configured to receive a differential signal. The apparatus also includes a filter having an input coupled to the auxiliary mixing path to filter jammer components of the received differential signal.