Abstract:
A connector for microelectronic elements includes a sheet-like body (30) having a plurality of holes (36), desirably arranged in a regular grid pattern. Each hole is provided with a resilient laminar contact (38) having a plurality of projections (42) extending inwardly over the hole in the body. Microelectronic elements (68) having bump leads (70) such as solder balls thereon may be engaged with the connector by advancing the bump leads into the holes of the connector to engage the bump leads with the contacts. The assembly can be tested, and if found acceptable, the bump leads can be permanently bonded to the contacts.
Abstract:
A microelectronic connection component includes a support such as a dielectric sheet having elongated leads extending along a surface. The leads have terminal ends permanently connected to the support and tip ends releasably connected to the support. The support is juxtaposed with a further element such as a semiconductor chip or wafer, and tip ends of the leads are bonded to contacts on the wafer using a bonding tool advanced through holes in the support. After bonding, the support and the further element are moved away from one another so as to deform the leads.
Abstract:
A connector for microelectronic elements includes a sheet-like body (3) having a plurality of holes (36), desirably arranged in a regular grid pattern. Each hole is provided with a resilient laminar contact (38) having a plurality of projections (42) extending inwardly over the hole in the body. Microelectronic elements (68) having bump leads (70) such as solder balls thereon may be engaged with the connector by advancing the bump leads into the holes of the connector to engage the bump leads with the contacts. The assembly can be tested, and if found acceptable, the bump leads can be permanently bonded to the contacts.
Abstract:
A microelectronic assembly including elements such as a semiconductor chip and substrate has electrical connections between the elements incorporating fusible conductive metal masses. The fusible masses are surrounded and contained by a compliant material such as an elastomer or gel. The fusible material may melt during operation or processing of the device to relieve thermal cycling stress in the electrical connections.
Abstract:
An interposer for interconnection between microelectronic circuit panels (260) has contacts (250) at its surfaces. Each contact has a central axis normal to the surface and a peripheral portion adapted to expand radially outwardly from the central axis responsive to a force applied by a pad (262) on the engaged circuit panel. Thus, when the circuit panels (260) are compressed with the interposers, the contacts expand radially and wipe across the pads (262). The wiping action facilitates bonding of the contacts to the pads, as by conductive bonding material (246) carried on the contacts themselves.
Abstract:
A structure (13) including a conductive, preferably metallic conductive layer (26) is provided with leads (12) on a bottom surface. The leads have fixed (16) ends permanently attached to the structure and free ends (18) detachable from the structure. The structure is engaged with a microelectronic element (22) such as a semiconductor chip or wafer, the free ends of the leads are bonded to the microelectronic element, and the leads are bent by moving the structure relative to the microelectronic element. Portions of the conductive layer are removed, leaving residual portions of the conductive layer as separate electrical terminals (32) connected to at least some of the leads. The conductive layer mechanically stabilizes the structure before bonding, and facilitates precise registration of the leads with the microelectronic element. After the conductive layer is converted to separate terminals, it does not impair free movement of the terminals relative to the microelectronic element.
Abstract:
Electrical connections are made between a pair of elements (32, 38) disposed on opposite side of a hole (28) extending through a dielectric layer (20) by evaporating a conductive material (40) such as a metal having high vapor pressure within the hole while maintaining the hole in a substantially sealed condition. The process may be performed simultaneously to form numerous connections within a microelectronic unit as, for example, within a multilayer circuit panel.
Abstract:
A thermal connector for conducting heat from microelectronic components such as semiconductor chips to a heat sink. The connector includes a large number of flexible thermal conductors (94, 96). The connector may be fabricated by a process which includes fabrication of the conductors as flat strips, bonding of the conductors to a pair of opposed planar sheets and vertically moving the sheets away from one another to expand the conductors vertically to their final three-dimensional configuration.
Abstract:
Electrical connections are made between a pair of elements (32, 38) disposed on opposite side of a hole (28) extending through a dielectric layer (20) by evaporating a conductive material (40) such as a metal having high vapor pressure within the hole while maintaining the hole in a substantially sealed condition. The process may be performed simultaneously to form numerous connections within a microelectronic unit as, for example, within a multilayer circuit panel.
Abstract:
A plurality of separate semiconductor chips (58), each having a contact-bearing surface (59) and contacts (64) on such surface, are disposed in an array so that the contact-bearing surfaces face and define a first surface of the array. A flexible, dielectric sheet (30) with terminals (34) thereon overlies the first or contact bearing surface of the semiconductor chips. Elongated leads (40) are disposed between the dielectric element and the semiconductor chips. Each lead has a first end (42) connected to a terminal on the dielectric element, and a second end (44) connected to a contact on a semiconductor chip in the array. All of the leads are formed simultaneously by moving the dielectric element and the array relative to one another to simultaneously displace all of the first ends of the leads relative to all of the second ends. The dielectric element is subdivided after the forming step so as to leave one region of the dielectric element connected to each chip and thereby form individual units each including one chip, or a small number of chips.