Abstract:
An electron-emitting device has at least a cathode electrode, an electron-emitting member which is electrically connected to the cathode electrode, and a resistive layer which is provided between the cathode electrode and the electron-emitting member. The resistive layer is composed of the same material as that of the electron-emitting member, and film density of the resistive layer is lower than film density of the electron-emitting member.
Abstract:
The present invention relates to a display device that employs edge emitters as a source for pixel electrons. The edge emitters allow the viewing glass plate to be made very small or eliminated, thereby substantially reducing the size of or eliminating the spacers typically utilized in conventional display devices and thereby enabling a simple and compact assembly structure. In one embodiment a pixel configuration comprises a phosphor area disposed between a plurality edge emitters, each of which are associated with tynes that are adapted to reduce the distance between the emitters and that separate the phosphor area into segments such that the emitters emit electrons when the voltage between a phosphor segment and the an emitter exceed a threshold voltage to cause the phosphor segment to emit light.
Abstract:
A self-gettering electron field emitter (30) has a first portion (40) formed of a low-work-function material for emitting electrons, and it has an integral second portion (50) that acts both as a low-resistance electrical conductor and as a gettering surface. The self-geterring emitter (30) is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance geterring material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-geterring emitter (30) is particularly suitable for use in lateral field emission devices (10). The preferred emitter structure has a tapered edge (60), with a salient portion (45) of the low-work-function material extending a small distance beyond an edge (55) of the gettering and low resistance material. A fabrication process (S1-S6) is specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices.
Abstract:
A microelectronic field emitter device (50) comprising a substrate (78), a conductive pedestal (64) on said substrate, and an edge emitter electrode on said pedestal, wherein the edge emitter electrode comprises an emitter cap layer (66) having an edge (68). The invention also contemplates a current limiter for a microelectronic field emitter device, which comprises a semi-insulating material selected from the group consisting of SiO, SiO+Cr (0 to 50 wt.%), SiO2 + Cr (0 to 50 wt.%), SiO + Nb, Al2O3 and SixOyNz sandwiched between an electron injector and a hole injector. Another aspect of the invention relates to a microelectronic field emitter device comprising a substrate (240), an emitter conductor (242) on such substrate, and a current limiter stack (244) formed on said substrate, such stack having a top (246) and at least one edge (248, 250), a resistive strap (266) on top of the stack, extending over the edge in electrical contact with the emitter conductor; and an emitter electrode on the current limiter stack over the resistive strap.
Abstract:
A microelectronic field emitter device (50) comprising a substrate (78), a conductive pedestal (64) on said substrate, and an edge emitter electrode on said pedestal, wherein the edge emitter electrode comprises an emitter cap layer (66) having an edge (68). The invention also contemplates a current limiter for a microelectronic field emitter device, which comprises a semi-insulating material selected from the group consisting of SiO, SiO+Cr (0 to 50 wt.%), SiO2 + Cr (0 to 50 wt.%), SiO + Nb, Al2O3 and SixOyNz sandwiched between an electron injector and a hole injector. Another aspect of the invention relates to a microelectronic field emitter device comprising a substrate (240), an emitter conductor (242) on such substrate, and a current limiter stack (244) formed on said substrate, such stack having a top (246) and at least one edge (248, 250), a resistive strap (266) on top of the stack, extending over the edge in electrical contact with the emitter conductor; and an emitter electrode on the current limiter stack over the resistive strap.
Abstract:
The invention concerns a field-emission cathode made of an electrically conducting material and having the shape of a narrow rod or a knife edge to ensure a high magnification of the electric field strength. The field-emission cathode is characterized in that at least part of the electron-emitting zone of the cathode includes preferably cylindrical host molecules and/or compounds with other host molecules and/or cylindrical atom networks, optionally with end-caps with a diameter in the nanometer range.
Abstract:
A lateral-emitter field emission device (10) has a gate (60) that is separated by an insulating layer (80) from a vaccum- or gas-filled microchamber environment (20) containing other elements of the device (10). For example, the gate (60) may be disposed external to the microchamber (20). The insulating layer (80) is disposed such that there is no vaccum- or gas-filled path to the gate for electrons that are emitted from a lateral emitter (40, 100). The insulating layer (70, 80) disposed between the emitter and the gate preferably comprises a material having a dielectric constant greater than one. The insulating layer also preferably has a low secondary electron yield over the device's operative range of electron energies. For display applications, the insulating layer is preferably transparent. Emitted electrons are confined to the microchamber (20) containing their emitter (100). Thus, the gate current component of the emitter current consists of displacement current only. This displacement current is a result of any change in potential of the gate relative to other elements such as, for example, relative to the emitter. Direct electron current from the emitter to the gate is prevented. An array of the devices comprises an array of microchambers, so that electron current from each emitter (100) can reach only the anode (50, 55) in the same microchamber, even for diode devices lacking a gate electrode (60). A fabrication process (S1-S28) is specially adapted for fabricating the device and arrays of such devices.
Abstract:
A self-gettering electron field emitter (30) has a first portion (40) formed of a low-work-function material for emitting electrons, and it has an integral second portion (50) that acts both as a low-resistance electrical conductor and as a gettering surface. The self-geterring emitter (30) is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance geterring material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-geterring emitter (30) is particularly suitable for use in lateral field emission devices (10). The preferred emitter structure has a tapered edge (60), with a salient portion (45) of the low-work-function material extending a small distance beyond an edge (55) of the gettering and low resistance material. A fabrication process (S1-S6) is specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices.
Abstract:
The field emission type cathode is made as a multilayered structure (33) in which conductive platelike corpuscles (30) are piled, whereby an edge portion of end surface of a field emission type cathode for emitting electrons is formed sharply and easily.
Abstract:
A process for fabricating, in a planar substrate, a hermetically sealed chamber for a field-emission cell or the like, allows operating the device in a vacuum or a low pressure inert gas. The process includes methods of covering an opening (160), enclosing the vacuum or gas, and methods of including an optional quantity of gettering material. An example of a device using such a hermetically sealed chamber is a lateral-emitter field-emission device (10) having a lateral emitter (100) parallel to a substrate (20) and having a simplified anode structure (70). In one simple embodiment, a control electrode (140) is positioned in a plane above the emitter edge (110) and automatically aligned to that edge. The simplified devices are specially adapted for field emission display arrays. An overall fabrication process uses steps (S1-S18) to produce the devices and arrays. Various embodiments of the fabrication process allow the use of conductive or insulating substrates (20), allow fabrication of devices having various functions and complexity, and allow covering a trench opening (160) etched through the emitter and insulator, thus enclosing the hermetically sealed chamber.