Abstract:
An electric connecting piece (30) and an LED lamp using the electric connecting piece (30) are provided. The electric connecting piece (30) is used for the electric connection between a light source substrate (20) and a driving board (40) of the LED lamp (100), and comprises an input terminal (32) and an output terminal (34). The LED lamp (100) comprises the driving board (40) and the light source substrate (20). The output terminal (34) is provided on the driving board (40) of the LED lamp (100), and the light source substrate (20) is provided with a fixing hole (22) corresponding to the input terminal (32). The input terminal (32) is fixed in the fixing hole (22) of the light source substrate (20) and is electrically connected with the light source substrate (20). The output terminal (34) comprises two contacts (342), and one end of each of the two contacts (342) is electrically connected with the driving board (40) respectively. The input terminal (32) comprises two connection heads which are respectively provided corresponding to the two contacts (342). One end of each of the two connection heads is electrically connected with the light source substrate (20) respectively. During assembling, the two contacts (342) of the output terminal (34) are respectively inserted into the two corresponding connection heads of the input terminal (32), and the two connection heads are elastically propped against the two contacts (342) respectively. The electric connecting piece (30) has the advantage of convenience in automatic assembling.
Abstract:
A method for providing a mechanical/electrical interconnection between two circuit boards, and the interconnection components required therefore, include a pin and socket each having a tail portion, a shoulder portion and a head portion. The tail portion of the pin is sized so as to fit into a plated through hole of the first board, the head portion is sized so as to allow an automated device to capture the head portion and to rest on top of the plated through hole when inserted therein, and the shoulder portion is sized in relation to the plated through hole so as to rest inside the plated through hole and to allow a predetermined amount of solder to flow under the head portion and down into the plated through hole, but not as far down as the tail portion, thereby assisting in centering the pin in the through hole. Upon heating to a solder reflow temperature, a ring of solder, around the periphery of the head portion of the pin and the shoulder portion of the socket, flows under the head of the pin and the shoulder of the socket, thereby forming a soldered electrical connection between the pin and the first board, and the socket and the second board. By aligning the pin with the socket and inserting the tail portion of the pin into the cavity of the socket, a separable reliable mechanical and electrical interconnection is formed between the first board and the second board.
Abstract:
Ein Steckkontakt (10) zum Durchkontaktieren von Lochrasterplatten (26) eignet sich dadurch auch zum Herstellen einer elektrischen Leitungsverbindung auf der Oberseite dieser Platte (26), daß eine Öse (16) mit kreisförmiger Aussparung (18) an dem oberen Ende des Steckkontaktes (10) mit einem derartigen Abstand zu demselben befestigt ist, daß der Abstand des Kreismittelpunktes der Aussparung (18) zu dem Kreismittelpunkt des in einem Loch (28) der Platte (26) eingesteckten zylindrischen Körpers (22) dem Rastermaß (A) der Löcher (28) der Lochrasterplatte (26) entspricht, und daß der Innendurchmesser (D) der Aussparung (18) gleich dem Durchmesser (D) der Löcher (28) der Lochrasterplatte (26) ist.
Abstract:
A panel board has a first voltage layer sandwiched between two ground layers at a close spacing to produce a large distributed capacitance; the two ground layers are connected by plated-through conductive holes spaced regularly across the board; a second (exposed) voltage layer is connected by regularly spaced plated-through holes to the first voltage layer, increasing the current carrying capacity of, and reducing the resistance across, the board; the plated-through holes are arranged in rows and columns in a pattern permitting the mounting of decoupling capacitors, at any point on the board, in a position parallel to the rows or parallel to the columns; and a socket terminal can be electrically connected directly to the exposed voltage layer or to the exposed ground layer using a ring connector.