Abstract:
A deployable wing that is folded so as to fit into a carrier such as an airplane that is released and automatically with the aid of parachutes to deploy and fly a given distance without assistance other than steering to reach a given destination and a propeller driven by a gas powered engine is actuated to propel the wing an extended distance. A guard is disposed adjacent to the propeller to assure that the lines of the parachutes do not get tangled into the propeller blades.
Abstract:
A VTOL/STOL free wing aircraft includes a free wing having wings on opposite sides of a fuselage connected to one another respectively adjacent fixed wing inboard or center root sections fixedly attached to the fuselage for free rotation about a spanwise access. Horizontal and vertical tail surfaces are located at the rear end of a boom assembly rotatably connected to the fuselage. A gearing or screw rod arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage in relation to the tail boom assembly to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.
Abstract:
A flight system capable of passively stable hover and horizontal translatory flight, comprises an apparatus defining a vertical axis, and including multiple ducts with substantially vertical axes in hover mode, spaced the axis; fluid momentum generators in the ducts to effect flow of fluid downwardly in the ducts in hover; and fluid flow deflector structure in the path of the flowing duct fluid, and angled to deflect the fluid flow away from the axis, in such manner as to provide stability in hover of the apparatus, as well as stability when the entire device is tilted through approximately 90.degree. to execute horizontal translatory flight.
Abstract:
UAV configurations and battery augmentation for UAV internal combustion engines, and associated systems and methods are disclosed. A representative configuration includes a fuselage, first and second wings coupled to and pivotable relative to the fuselage, and a plurality of lift rotors carried by the fuselage. A representative battery augmentation arrangement includes a DC-powered motor, an electronic speed controller, and a genset subsystem coupled to the electronic speed controller. The genset subsystem can include a battery set, an alternator, and a motor-gen controller having a phase control circuit configurable to rectify multiphase AC output from the alternator to produce rectified DC feed to the DC-powered motor. The motor-gen controller is configurable to draw DC power from the battery set to produce the rectified DC feed.
Abstract:
An unmanned aerial vehicle comprising at least one rotor motor. The rotor motor is powered by a micro hybrid generation system. The micro hybrid generator system comprises a rechargeable battery configured to provide power to the at least one rotor motor, a small engine configured to generate mechanical power, a generator motor coupled to the small engine and configured to generate AC power using the mechanical power generated by the small engine, a bridge rectifier configured to convert the AC power generated by the generator motor to DC power and provide the DC power to either or both the rechargeable battery and the at least one rotor motor, and an electronic control unit configured to control a throttle of the small engine based, at least in part, on a power demand of at least one load, the at least one load including the at least one rotor motor.
Abstract:
A muffler devised particularly for a small, reciprocating-piston two-stroke internal combustion engine of the type used on unmanned aerial vehicles. The muffler comprises a body incorporating an inlet, an outlet, and a plurality of chambers for exhaust gas flow from the inlet to the outlet. The body is configured to present a compact profile for installation on the engine. The chambers are so configured that adjacent chambers communicate to facilitate exhaust gas flow from the inlet to the outlet via flow passages. The various chambers comprise an inner chamber, an outer chamber, and one or more intervening chambers disposed between the inner and outer chambers. The various chambers are disposed one about another in annular formation. This arrangement creates a long flow path from the inlet to the outlet incorporating various directional changes.
Abstract:
An aircraft having a vertical takeoff and landing fight mode and a forward flight mode. The aircraft includes an airframe and a versatile propulsion system attached to the airframe. The versatile propulsion system includes a plurality of propulsion assemblies. A flight control system is operable to independently control the propulsion assemblies. The propulsion assemblies are interchangeably attachable to the airframe such that the aircraft has a liquid fuel flight mode and an electric flight mode. In the liquid fuel flight mode, energy is provided to each of the propulsion assemblies from a liquid fuel. In the electric flight mode, energy is provided to each of the propulsion assemblies from an electric power source.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for an unmanned aerial system inspection system. One of the methods is performed by a UAV and includes obtaining, from a user device, flight operation information describing an inspection of a vertical structure to be performed, the flight operation information including locations of one or more safe locations for vertical inspection. A location of the UAV is determined to correspond to a first safe location for vertical inspection. A first inspection of the structure is performed is performed at the first safe location, the first inspection including activating cameras. A second safe location is traveled to, and a second inspection of the structure is performed. Information associated with the inspection is provided to the user device.
Abstract:
An un-manned aerial vehicle including a powered chassis having a top side and a bottom side. The powered chassis includes a fuel powered electricity generator. The vehicle includes a flight system functionally coupled to the powered chassis. The vehicle includes a flood light system functionally coupled to a bottom side of the powered chassis and oriented to project light downward therefrom. The flood light system includes a plurality of modular lights that are able to selectably couple to the bottom side of the powered chassis. The flood light system includes a programmable light control module that controls lighting. The vehicle includes an automated flight control system functionally coupled to the flight system that automatically directs light from the flood light system to a desired region.