Abstract:
PROBLEM TO BE SOLVED: To provide a material excellent in field electron emission properties which has high field strength resistance, emits electrons at a high current density and free from material deterioration. SOLUTION: Regarding the material design, in the sp 3 bonding boron nitride film body, the surface shape excellent in field electron emission properties is formed in a self-forming manner by reaction from a vapor phase. COPYRIGHT: (C)2005,JPO&NCIPI
Abstract:
The present invention discloses an electrode material that eases electron injection and does not react with contact substances. The structure of the material includes a conductive substrate plane on the top of which an emissive material is coated. The emissive coating bonds strongly with the substrate plane. The emissive material is of low work function and high chemical stability.
Abstract:
A field emission electron source for emitting electrons under applied electric field includes a cold cathode having molecules of an aromatic compound vapor-deposited thereon at a pointed end of said cold cathode.
Abstract:
This invention relates to a process for fabricating ZnO nanowires with high aspect ratio at low temperature, which is associated with semiconductor manufacturing process and a gate controlled field emission triode is obtained. The process comprises providing a semiconductor substrate, depositing a dielectric layer and a conducting layer, respectively, on the semiconductor substrate, defining the positions of emitter arrays on the dielectric layer and conducting layer, depositing an ultra thin ZnO film as a seeding layer on the substrate, growing the ZnO nanowires as the emitter arrays by using hydrothermal process, and etching the areas excluding the emitter arrays, then obtaining the gate controlled field emission triode.
Abstract:
A tip of an electron beam source includes a core carrying a coating. The coating is formed from a material having a greater electrical conductivity than a material forming the surface of the core.
Abstract:
Disclosed is a carbon-based composite particle for an electron emission source comprising: a particle of a material selected from the group consisting of metals, oxides, and ceramic materials; and a carbon-based material such as a carbon nanotube which is partially buried inside of the particle and which partially protrudes from the surface of the particle.
Abstract:
Based on designs concerning boron nitride thin-films each including boron nitride crystals in acute-ended shapes excellent in field electron emission properties, and designs of emitters adopting such thin-films, it is aimed at appropriately controlling a distribution state of such crystals to thereby provide an emitter having an excellent efficiency and thus requiring only a lower threshold electric field for electron emission.In a design of a boron nitride thin-film emitter comprising crystals that are each represented by a general formula BN, that each include sp3 bonded boron nitride, sp2 bonded boron nitride, or a mixture thereof, and that each exhibit an acute-ended shape excellent in field electron emission property; there is controlled an angle of a substrate relative to a reaction gas flow upon deposition of the emitter from a vapor phase, thereby controlling a distribution state of the crystals over a surface of the thin-film.
Abstract:
A stable cold field electron emitter is produced by forming a coating on an emitter base material. The coating protects the emitter from the adsorption of residual gases and from the impact of ions, so that the cold field emitter exhibits short term and long term stability at relatively high pressures and reasonable angular electron emission.
Abstract:
Device for generating X-rays, comprising: a field emission cathode (10) configured to emit electrons when an electrical field is applied to the cathode (10); and an anode (20), the anode being configured to generate X-rays as a result of receiving electrons from the field emission cathode (10); wherein the cathode (10) comprises an electron emission surface (S) extending opposite the anode (20), the cathode (10) being configured to emit electrons substantially from the electron emission surface (S) during use.