Abstract:
The following method is provided: a method of readily fabricating an electron-emitting device, coated with a low-work function material, having good electron-emitting properties with high reproducibility such that differences in electron-emitting properties between electron-emitting devices are reduced. Before a structure is coated with the low-work function material, a metal oxide layer is formed on the structure.
Abstract:
A CNT field emitting light source (20) is provided. The light source includes an anode (202), an anode substrate (201), a cathode (214), a cathode substrate (208), a fluorescent layer (203) and a sealing means (205). The anode is configured on the anode substrate, and the cathode is configured on the cathode substrate. The anode and the cathode are oppositely configured to produce a spatial electrical field when a voltage is applied therebetween. The cathode includes an emitter layer (206), capable of emitting electrodes bombarding the cathode and matters attached thereupon when activated and controlled by the spatial electric field, and a conductive layer (207), sandwiched between the cathode substrate and the emitter layer for providing an electrically connection therebetween. The fluorescent layer is configured on a surface of the anode oppositely facing the emitter layer, so as to produce fluorescence when bombarded by electrodes emitted from the emitter layer.
Abstract:
A field emission electron source for emitting electrons under applied electric field includes a cold cathode having molecules of an aromatic compound vapor-deposited thereon at a pointed end of said cold cathode.
Abstract:
Device for generating X-rays, comprising: —a field emission cathode (10) configured to emit electrons when an electrical field is applied to the cathode (10); and—an anode (20), the anode being configured to generate X-rays as a result of receiving electrons from the field emission cathode (10); wherein the cathode (10) comprises an electron emission surface (S) extending opposite the anode (20), the cathode (10) being configured to emit electrons substantially from the electron emission surface (S) during use.
Abstract:
There are provided an electron emission element that operates stably in the atmosphere, a method of manufacturing the same and a method of emitting field electrons using such an element as well as an emission/display device realized by using a cold cathode electron source having a surface profile showing an excellent field electron characteristic and showing a low electron emission threshold value, a high output level and a long service life.A dilute material gas of rare gas such as argon and/or helium, hydrogen or a mixture gas thereof is used. An electron emission element substrate (4) is held to a temperature level between room temperature and 1,300° C. in an atmosphere where boron source material gas and nitride source material gas are introduced to 0.0001 to 100 volume % relative to the dilute material gas under pressure of 0.001 to 760 Torr, causing plasma to be generated typically by means of a plasma torch (7) or without causing plasma to be generated, and irradiated with ultraviolet rays by means of an excimer ultraviolet laser (6) or the like to make the material gas to react so as to form a boron nitride material containing crystal that has a pointed profile and is expressed by BN on the element substrate in a self-forming manner. The produced boron nitride material operates as field electron emission element that emits electrons stably in the atmosphere when a voltage is applied thereto. The reaction product is taken out from the reaction vessel (1) with the substrate after the end of the reaction and a cold cathode type emission/display device is assembled by using the reaction product as field electron emission source.
Abstract:
An electron emission material having high electron emission efficiency and long lifespan, and an electron emission device and an electron emission display device having the electron emission material. The electron emission material has a surface to which hydrogen atoms are attached. The electron emission display device includes: a front panel having a phosphor layer; an electron emission device adhered to the front panel with a space therebetween; and a hydrogen emitter in the space defined by the front panel and the electron emission device.
Abstract:
An electron beam generator device includes a base body having a conductive surface and a electron-emission electrode having a carbon nanotube structure on the conductive surface of the substrate. The carbon nanotube structure constitutes a network structure which has plural carbon nanotubes and a crosslinked part including a chemical bond of plural functional groups. The chemical bond connects one end of one of the carbon nanotubes to another one of the carbon nanotubes.A method for producing an electron beam generator device, includes applying plural carbon nanotubes each having a functional group onto a conductive surface of a base body, and crosslinking the functional groups with a chemical bond to form a crosslinked part, thereby forming a carbon nanotube structure constituting a network structure having plural carbon nanotubes electrically connected to each other.
Abstract:
An electron emission device includes a substrate, a first electrode on the substrate, a second electrode electrically insulated from the first electrode, a first insulating layer between the first electrode and the second electrode, an electron emission source hole in the first insulating layer and the second electrode to expose the first electrode, and an electron emission source having a first electron emission material layer on the first electrode in the electron emission source hole and a second electron emission material layer on the first electron emission material layer.
Abstract:
The object of the present invention is to provide a material excellent in field electron emission which can withstand the high intensity of electric field, allows the enhanced emission of electrons resulting in a high density of current, and does not degrade during long use. The solving means consists of providing a membrane body of sp3-bonded boron nitride excellent in field electron emission obtained by a method comprising the steps of introducing a reactive gas including a boron source and a nitrogen source into a reaction system; adjusting the temperature of a substrate in the reaction chamber to fall between room temperature to 1300° C.; radiating a UV beam onto the substrate with or without the concomitant existence of plasma; and forming via vapor-phase reaction a membrane on the substrate in which a surface texture allowing excellent field electron emission is formed in a self-organized manner.
Abstract:
A field emission tip includes a base with a central portion and a tapered portion. The central portion of the base includes a peripheral surface, at least a portion of which is oriented substantially vertically or perpendicularly relative to a plane in which a substrate from which the field emission tip protrudes resides. An apex may be located at an exposed end of the central portion of the base. The tapered portion of the base includes an inclined surface that extends toward the exposed end of the central portion of the base. The tapered portion of the base may be formed from material that is redeposited as the emission tip is fabricated. The apex may be formed, at least in part, from a low work function material, such as one or more of aluminum titanium silicide, titanium silicide nitride, titanium nitride, tri-chromium mono-silicon, and tantalum nitride. Field emission arrays and field emission displays that include such field emission tips are also disclosed.