Abstract:
A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.
Abstract:
An ion implanting system includes an ion beam generator configured for generating a first ion beam; a mass separation device configured for isolating a second ion beam including required ions from the first ion beam; a holder device configured for holding a plurality of substrates, wherein the holder device and the second ion beam reciprocate relative to each other along a first direction in straight line or arc to make the plurality of substrates pass across a projection region of the second ion beam; and a first detector configured for obtaining relevant parameters of the second ion beam. The above ion beam implanting system may increase the ion beam utilization rate. The ion implanting system further comprises a second detector arranged on the holder device which could fully scan across the projection range of the second ion beam and obtaining the relevant parameters of the second ion beam.
Abstract:
Methods, apparatus and systems for collecting thin tissue samples for imaging. Thin tissue sections may be cut from tissue samples using a microtome-quality knife. In one example, tissue samples are mounted to a substrate that is rotated such that thin tissue sections are acquired via lathing. Collection of thin tissue sections may be facilitated by a conveyor belt. Thin tissue sections may be mounted to a thin substrate (e.g., by adhering thin tissue sections to a thin substrate via a roller mechanism) that may be imaged, for example, by an electron beam (e.g., in an electron microscope). This tissue sections may be strengthened before cutting via a blockface thinfilm deposition technique and/or a blockface taping technique. An automated reel-to-reel imaging technique may be employed for collected/mounted tissue sections to facilitate random-access imaging of tissue sections and maintaining a comprehensive library including a large volume of samples.
Abstract:
An integrated coupon structure for atom probe tomography (APT) analysis includes a base portion and an array of microtip posts protruding from the base portion. Both the base portion and the microtip posts formed from a same metal material, and the microtip posts being shaped at an apex thereof so as to be adapted to receive a sample attached thereto.
Abstract:
There is provided a mini environment type transfer unit which can efficiently transfer a sample to a critical dimension scanning electron microscope (CD-SEM) even in the case of use of a SMIF pod which can store only one photomask. In addition to a load port, a stocker which can store a plurality of photomasks is provided in the mini environment type transfer unit. A mask storage slot in which a plurality of storage units are stacked is provided in the stocker, and one photomask is stored in each storage unit. A sensor is provided in each storage unit to determine whether or not the photomask is normally stored. Additionally, a sensor is provided in each storage unit to detect whether or not the photomask exists.
Abstract:
A particle beam device and a sample receptacle apparatus, which has a sample holder, are disclosed. The sample holder is arranged in a movable fashion along at least a first axis and along at least a second axis. Furthermore, the sample holder is arranged in a rotatable fashion about a first axis of rotation and about a second axis of rotation. A first sample holding device is arranged relative to the sample holder in a rotatable fashion about a third axis of rotation, in which the third axis of rotation and the second axis of rotation are at least in part arranged laterally offset with respect to one another. Furthermore, a control apparatus is provided, in which the first sample holding device is rotatable about the third axis of rotation into an analysis position and/or treating position using the control apparatus.
Abstract:
A device for holding a specimen holder, the device including a body with a slot formed therein. The slot includes an interior for receiving the specimen holder which may be a flat disk with edges and a pair of opposing sides. The disk may be made of a resilient deformable material. The slot may be sized to receive the specimen holder through an open top end and may taper from top bottom, such that the bottom end of the slot is smaller than the specimen holder. The slot further configured to contact the specimen holder along edges of the specimen holder and to allow some sideways deformation of the specimen holder without either side of the specimen holder distant from the edges coming into contact with the interior of the slot.
Abstract:
A substrate processing apparatus includes a substrate stage for mounting two or more substrates thereon. The substrate stage includes substrate stage units. Each of the substrate stage units includes a central temperature control flow path for controlling the temperature of a central portion of each of the substrates and a peripheral temperature control flow path for controlling the temperature of a peripheral portion of each of the substrates. The central temperature control flow path and the peripheral temperature control flow path are formed independently of each other. The substrate stage includes one temperature control medium inlet port for introducing therethrough a temperature control medium into the peripheral temperature control flow path and temperature control medium outlet ports for discharging therethrough the temperature control medium from the peripheral temperature control flow path. The number of the temperature control medium outlet ports corresponds to the number of substrates.
Abstract:
A transmission electron microscope apparatus, a sample holder and a sample stage and a method for acquiring spectral images as well are provided which can acquire spectral images at a time from a plurality of samples and measure highly accurate chemical shifts from electron energy loss spectra extracted from the spectral images.A transmission electron microscope apparatus comprises an electron gun for emitting an electron beam, a condenser lens for converging the emitted electron beam, a plurality of sample stages radiated with a converged electron beam and adapted to mount samples, a sample movement control unit for moving the sample stages, image-forming lenses for forming an image of an electron beam having transmitted through the plural samples, an electron spectrometer adapted to perform spectrometry of the electron beam in accordance with energy amounts the image-formed electron beam has and deliver spectral images obtained at convergence positions which are different in energy dispersion axis direction and in a direction orthogonal to the energy dispersion axis direction to thereby acquire spectral images from the plural samples at a time, and an image display unit for displaying acquired spectral images.
Abstract:
An electron beam observation device includes a mechanism which disposes a specimen at an upstream side in an electron beam traveling direction outside an objective lens, from which an image is transferred under a magnification of ⅕ to 1/30, in addition to an inside of the objective lens in which a specimen is disposed at a time of ordinary observation.