ELECTRODE COMPOSITION COMPRISING DOPED TUNGSTEN OXIDES AND METHOD OF PREPARATION
    331.
    发明申请
    ELECTRODE COMPOSITION COMPRISING DOPED TUNGSTEN OXIDES AND METHOD OF PREPARATION 审中-公开
    包含DOPED TUNGSTEN氧化物的电极组合物及其制备方法

    公开(公告)号:WO0120695A9

    公开(公告)日:2002-10-03

    申请号:PCT/US0025091

    申请日:2000-09-14

    CPC classification number: H01M4/485 H01M4/131 H01M4/1391 H01M6/16 H01M10/052

    Abstract: Provided is a novel electrode composition suitable for use in an electrochemical cell. The composition includes a polymeric binder material and a doped tungsten (IV) oxide active material. The active material includes a tungsten (IV) oxide host material and a metal dopant in the host material effective to increase the charge-discharge capacity per unit weight of the active material when used in an electrochemical cell. Also provided is a method for forming the electrode composition and an electrochemical cell comprising the composition. The invention results in an electrochemical cell having improved charge-discharge capacity per unit weight of the electrode active material, and is additionally chemically and electrochemically stable.

    Abstract translation: 提供适用于电化学电池的新型电极组合物。 该组合物包括聚合物粘合剂材料和掺杂的氧化钨(IV)活性材料。 活性材料包括钨(IV)氧化物主体材料和主体材料中的金属掺杂剂,当在电化学电池中使用时,有效地增加每单位重量的活性材料的充电 - 放电能力。 还提供了形成电极组合物的方法和包含该组合物的电化学电池。 本发明导致电化学电池具有改善的每单位重量的电极活性材料的充电 - 放电能力,并且还具有化学和电化学稳定性。

    PRECISION LIGHT SOURCE
    332.
    发明申请

    公开(公告)号:WO2021126575A1

    公开(公告)日:2021-06-24

    申请号:PCT/US2020/063575

    申请日:2020-12-07

    Abstract: A pulse transformer for modifying the amplitude and phase of short optical pulses includes a pulse source and an adaptively controlled stretcher or compressor including at least one fiber Bragg grating (FBG) configured to receive pulses from the pulse source and having a first second-order dispersion parameter (D21). The pulse transformer further includes at least one optical amplifier configured to receive pulses from the FBG and a compressor configured to receive pulses from the at least one optical amplifier. The compressor has a second second-order dispersion parameter (‑D22), an absolute value of the first second-order dispersion parameter (|D21|) and an absolute value of the second second-order dispersion parameter (|‑D22|) that are substantially equal to one another to within 10%.

    NOISE DETECTION, DIAGNOSTICS, AND CONTROL OF MODE-LOCKED LASERS
    335.
    发明申请
    NOISE DETECTION, DIAGNOSTICS, AND CONTROL OF MODE-LOCKED LASERS 审中-公开
    噪声检测,诊断和模式锁定激光器的控制

    公开(公告)号:WO2014120292A1

    公开(公告)日:2014-08-07

    申请号:PCT/US2013/065448

    申请日:2013-10-17

    Abstract: The present invention features a laser based system configured with a noise detection unit. The system includes a mode-locked oscillator. A noise detection unit includes at least one optical detector that monitors optical pulses generated by the mode-locked oscillator and produces an electrical signal in response to the optical pulses. The noise detection unit includes a first filter to transmit signal power over a signal bandwidth which includes the mode-locked laser repetition frequency, frep. The noise detection unit may include one or more filters to transmit power over a noise bandwidth that substantially excludes repetition frequency, frep. Non-linear signal processing equipment is utilized to generate one or more signals representative of the power in the signal bandwidth relative to the power in the noise bandwidth. The system includes a controller operable to generate a signal for controlling the laser based system based on the relative power.

    Abstract translation: 本发明的特征在于具有噪声检测单元的基于激光的系统。 该系统包括锁模振荡器。 噪声检测单元包括至少一个光检测器,其监测由锁模振荡器产生的光脉冲,并响应于光脉冲产生电信号。 噪声检测单元包括用于在包括锁模激光重复频率frep的信号带宽上传输信号功率的第一滤波器。 噪声检测单元可以包括一个或多个滤波器,以在基本上排除重复频率frep的噪声带宽上传输功率。 利用非线性信号处理设备产生一个或多个表示信号带宽中功率相对于噪声带宽中功率的信号。 该系统包括可操作以基于相对功率产生用于控制基于激光的系统的信号的控制器。

    IRON PHOSPHATES: NEGATIVE ELECTRODE MATERIALS FOR AQUEOUS RECHARGEABLE SODIUM ION ENERGY STORAGE DEVICES
    337.
    发明申请
    IRON PHOSPHATES: NEGATIVE ELECTRODE MATERIALS FOR AQUEOUS RECHARGEABLE SODIUM ION ENERGY STORAGE DEVICES 审中-公开
    铁磷酸盐:用于水质可充电钠离子能量储存装置的负极电极材料

    公开(公告)号:WO2013138541A1

    公开(公告)日:2013-09-19

    申请号:PCT/US2013/031119

    申请日:2013-03-14

    Abstract: Various embodiments of the present invention relate to electrode materials based on iron phosphates that can be used as the negative electrode materials for aqueous sodium ion batteries and electrochemical capacitors. At least one embodiment includes a negative electrode material for an aqueous sodium ion based energy storage device. The negative electrode material with a non-olivine crystal structure includes at least one phosphate selected from iron hydroxyl phosphate, Na 3 Fe 3 (PO 4 ) 4 , Na 3 Fe(PO 4 ) 2 , iron phosphate hydrate, ammonium iron phosphate hydrate, carbon-coated or carbon-mixed sodium iron phosphate. At least one embodiment includes an energy storage device that includes such a negative electrode material.

    Abstract translation: 本发明的各种实施方案涉及可用作钠盐水溶液和电化学电容器的负极材料的基于磷酸铁的电极材料。 至少一个实施方案包括用于钠盐水溶液的能量储存装置的负极材料。 具有非橄榄石晶体结构的负极材料包括选自磷酸铁,Na 3 Fe 3(PO 4)4,Na 3 Fe(PO 4)2,磷酸铁水合物,磷酸铁铵水合物,碳涂覆或碳混合物中的至少一种磷酸盐 磷酸铁钠 至少一个实施例包括包括这种负极材料的能量存储装置。

    AMORPHOUS MEDICINAL FINE PARTICLES PRODUCED BY PULSED LASER ABLATION IN LIQUID AND THE PRODUCTION METHOD THEREOF
    338.
    发明申请
    AMORPHOUS MEDICINAL FINE PARTICLES PRODUCED BY PULSED LASER ABLATION IN LIQUID AND THE PRODUCTION METHOD THEREOF 审中-公开
    通过脉冲激光在液体中产生的非晶药物微粒及其生产方法

    公开(公告)号:WO2013122988A1

    公开(公告)日:2013-08-22

    申请号:PCT/US2013/025845

    申请日:2013-02-13

    CPC classification number: A61K41/00 A61J3/02 A61K9/50 A61K9/51 Y10T428/2982

    Abstract: The present disclosure is directed to an in-liquid laser-based method for fabricating a solution of fine particles of amorphous solid medicinal compounds, a solution of fine particles of amorphous medicinal agents made with the method, and fine particles made with the method. By using a target solidified via a phase transition process to covert an initial crystalline structure into an amorphous solid, technical difficulties with handling a hydraulically-pressed target are overcome. The laser-based ablation process produces amorphous solid medicinal compound fine particles, which improves the bioavailability and solubility of the medicinal compound. The improvement results from a combination of: disordered crystalline structure and enlarged relative surface area by particle size reduction. The laser based method may be carried out with ultrashort pulsed laser systems, or with UV nanosecond lasers. Results obtained with an ultrashort near IR laser and a UV nanosecond laser show formation of amorphous solid curcumin fine particles.

    Abstract translation: 本公开涉及一种用于制造无定形固体药物化合物的微粒溶液的液体内基于激光的方法,用该方法制备的非晶医药的微粒溶液以及用该方法制成的微粒。 通过使用通过相变过程固化的靶将初始晶体结构转变为无定形固体,克服了处理液压压制靶的技术困难。 基于激光的消融过程产生无定形固体药物复合细颗粒,提高了药用化合物的生物利用度和溶解度。 通过以下组合的改进结果:无序的结晶结构和通过粒径减小扩大的相对表面积。 基于激光的方法可以用超短脉冲激光系统或UV纳秒激光器进行。 用超短距离近红外激光和UV纳秒激光显示的结果显示无定形固体姜黄素细颗粒的形成。

    STABLE COLLOIDAL SUSPENSIONS OF GOLD NANOCONJUGATES AND THE METHOD FOR PREPARING THE SAME
    339.
    发明申请
    STABLE COLLOIDAL SUSPENSIONS OF GOLD NANOCONJUGATES AND THE METHOD FOR PREPARING THE SAME 审中-公开
    金纳米胶的稳定胶体悬浮液及其制备方法

    公开(公告)号:WO2013109832A1

    公开(公告)日:2013-07-25

    申请号:PCT/US2013/022066

    申请日:2013-01-18

    Inventor: QIAN, Wei CHE, Yong

    Abstract: In the present invention, a method for determining the stability threshold amount of a stabilizer component for gold nanoparticles to prevent their aggregation in any electrolyte solution, is disclosed. The method permits for very low levels of stabilizer components to be used while still permitting conjugation with other functional ligands. The method comprises preparation of stable gold nanoparticles conjugated with different amount of stabilizing agents in deionized water first and then testing the stability of colloidal suspension of these gold nanoparticles in the presence of the electrolyte solution by monitoring the absorbance at 520 nm. The invention also comprises a method for fabrication of nanoconjugates comprising gold nanoparticles and only the stabilizer components or comprising gold nanoparticles, stabilizer components and functional ligands, which are stable in the presence of electrolytes.

    Abstract translation: 在本发明中,公开了一种用于确定金纳米颗粒的稳定剂组分以防止其在任何电解质溶液中聚集的稳定剂阈值量的方法。 该方法允许使用非常低水平的稳定剂组分,同时仍允许与其它官能配体缀合。 该方法首先制备在去离子水中与不同量的稳定剂缀合的稳定金纳米颗粒,然后通过监测520nm处的吸光度,测定这些金纳米粒子在电解质溶液存在下的胶体悬浮液的稳定性。 本发明还包括一种制造纳米缀合物的方法,其包括金纳米颗粒并且仅包含稳定剂组分或包含在电解质存在下稳定的金纳米颗粒,稳定剂组分和官能配体。

    METAL ORGANIC COMPLEXES FOR IMPROVED SMOOTHNESS AND UNIFORMITY OF THIN FILMS DEPOSITED FROM NANOCOLLOIDS VIA ELECTROPHORESIS
    340.
    发明申请
    METAL ORGANIC COMPLEXES FOR IMPROVED SMOOTHNESS AND UNIFORMITY OF THIN FILMS DEPOSITED FROM NANOCOLLOIDS VIA ELECTROPHORESIS 审中-公开
    金属有机复合物,用于通过电泳从纳米胶体中沉积的薄膜的平滑性和均匀性

    公开(公告)号:WO2013063090A2

    公开(公告)日:2013-05-02

    申请号:PCT/US2012/061656

    申请日:2012-10-24

    Abstract: Disclosed is a process for electrophoretic deposition of colloidal suspensions of nanoparticles, especially from aprotic solvents, onto a variety of substrates. The process provides chemical additives that can be used to improve thin films deposited from colloidal suspensions by increasing the rate of deposition and the smoothness of the deposited film. In this process, a chemical additive is used to improve the properties of the deposited thin films. The chemical additive comprises a redox couple, an organometallic complex, a metallocene, a ferrocene, or a nickelocene. The colloidal suspension can be composed of semiconductor, metal or ceramic nanoparticles suspended in an aprotic polar solvent such as acetone, acetonitrile, or pyridine. The process also improves the properties of thin films deposited from protic solvents. The particles have at least one dimension ranging from 0.1 nanometers (nm) to 500 nm.

    Abstract translation: 公开了一种将纳米粒子,特别是非质子溶剂的胶体悬浮液电泳沉积到各种基底上的方法。 该方法提供化学添加剂,其可用于通过增加沉积速率和沉积膜的平滑度来改善由胶体悬浮液沉积的薄膜。 在该方法中,使用化学添加剂来改善沉积的薄膜的性质。 化学添加剂包括氧化还原对,有机金属络合物,茂金属,二茂铁或二茂镍。 胶态悬浮液可以由悬浮在非质子极性溶剂如丙酮,乙腈或吡啶中的半导体,金属或陶瓷纳米颗粒组成。 该方法还改善了由质子溶剂沉积的薄膜的性质。 颗粒具有0.1纳米(nm)至500nm的至少一个维度。

Patent Agency Ranking