Abstract:
Provided is a novel electrode composition suitable for use in an electrochemical cell. The composition includes a polymeric binder material and a doped tungsten (IV) oxide active material. The active material includes a tungsten (IV) oxide host material and a metal dopant in the host material effective to increase the charge-discharge capacity per unit weight of the active material when used in an electrochemical cell. Also provided is a method for forming the electrode composition and an electrochemical cell comprising the composition. The invention results in an electrochemical cell having improved charge-discharge capacity per unit weight of the electrode active material, and is additionally chemically and electrochemically stable.
Abstract:
A pulse transformer for modifying the amplitude and phase of short optical pulses includes a pulse source and an adaptively controlled stretcher or compressor including at least one fiber Bragg grating (FBG) configured to receive pulses from the pulse source and having a first second-order dispersion parameter (D21). The pulse transformer further includes at least one optical amplifier configured to receive pulses from the FBG and a compressor configured to receive pulses from the at least one optical amplifier. The compressor has a second second-order dispersion parameter (‑D22), an absolute value of the first second-order dispersion parameter (|D21|) and an absolute value of the second second-order dispersion parameter (|‑D22|) that are substantially equal to one another to within 10%.
Abstract:
Examples of compact control electronics for precision frequency combs are disclosed. Application of digital control architecture in conjunction with compact and configurable analog electronics provides precision control of phase locked loops with reduced or minimal latency, low residual phase noise, and/or high stability and accuracy, in a small form factor.
Abstract:
The present disclosure provides examples of a laser-based material processing system for liquid-assisted, ultrashort pulse (USP) laser micromachining. An example material processing application includes drilling thru-holes or blind holes in a nearly transparent glass workpiece (substrate) using parallel processing with an n x m array of focused laser beams. Methods and systems are disclosed herein which provide for formation of high aspect ratio holes with low taper in fine pitch arrangements.
Abstract:
The present invention features a laser based system configured with a noise detection unit. The system includes a mode-locked oscillator. A noise detection unit includes at least one optical detector that monitors optical pulses generated by the mode-locked oscillator and produces an electrical signal in response to the optical pulses. The noise detection unit includes a first filter to transmit signal power over a signal bandwidth which includes the mode-locked laser repetition frequency, frep. The noise detection unit may include one or more filters to transmit power over a noise bandwidth that substantially excludes repetition frequency, frep. Non-linear signal processing equipment is utilized to generate one or more signals representative of the power in the signal bandwidth relative to the power in the noise bandwidth. The system includes a controller operable to generate a signal for controlling the laser based system based on the relative power.
Abstract:
The present invention relates to precision linewidth control and frequency measurements of continuous wave lasers for the near to far IR spectral regions, precision frequency synthesizers and exemplary applications in molecular detection. Methods and systems are disclosed for simultaneous line narrowing of cw lasers, as well as referencing the desired emission wavelength to a frequency comb laser.
Abstract:
Various embodiments of the present invention relate to electrode materials based on iron phosphates that can be used as the negative electrode materials for aqueous sodium ion batteries and electrochemical capacitors. At least one embodiment includes a negative electrode material for an aqueous sodium ion based energy storage device. The negative electrode material with a non-olivine crystal structure includes at least one phosphate selected from iron hydroxyl phosphate, Na 3 Fe 3 (PO 4 ) 4 , Na 3 Fe(PO 4 ) 2 , iron phosphate hydrate, ammonium iron phosphate hydrate, carbon-coated or carbon-mixed sodium iron phosphate. At least one embodiment includes an energy storage device that includes such a negative electrode material.
Abstract:
The present disclosure is directed to an in-liquid laser-based method for fabricating a solution of fine particles of amorphous solid medicinal compounds, a solution of fine particles of amorphous medicinal agents made with the method, and fine particles made with the method. By using a target solidified via a phase transition process to covert an initial crystalline structure into an amorphous solid, technical difficulties with handling a hydraulically-pressed target are overcome. The laser-based ablation process produces amorphous solid medicinal compound fine particles, which improves the bioavailability and solubility of the medicinal compound. The improvement results from a combination of: disordered crystalline structure and enlarged relative surface area by particle size reduction. The laser based method may be carried out with ultrashort pulsed laser systems, or with UV nanosecond lasers. Results obtained with an ultrashort near IR laser and a UV nanosecond laser show formation of amorphous solid curcumin fine particles.
Abstract:
In the present invention, a method for determining the stability threshold amount of a stabilizer component for gold nanoparticles to prevent their aggregation in any electrolyte solution, is disclosed. The method permits for very low levels of stabilizer components to be used while still permitting conjugation with other functional ligands. The method comprises preparation of stable gold nanoparticles conjugated with different amount of stabilizing agents in deionized water first and then testing the stability of colloidal suspension of these gold nanoparticles in the presence of the electrolyte solution by monitoring the absorbance at 520 nm. The invention also comprises a method for fabrication of nanoconjugates comprising gold nanoparticles and only the stabilizer components or comprising gold nanoparticles, stabilizer components and functional ligands, which are stable in the presence of electrolytes.
Abstract:
Disclosed is a process for electrophoretic deposition of colloidal suspensions of nanoparticles, especially from aprotic solvents, onto a variety of substrates. The process provides chemical additives that can be used to improve thin films deposited from colloidal suspensions by increasing the rate of deposition and the smoothness of the deposited film. In this process, a chemical additive is used to improve the properties of the deposited thin films. The chemical additive comprises a redox couple, an organometallic complex, a metallocene, a ferrocene, or a nickelocene. The colloidal suspension can be composed of semiconductor, metal or ceramic nanoparticles suspended in an aprotic polar solvent such as acetone, acetonitrile, or pyridine. The process also improves the properties of thin films deposited from protic solvents. The particles have at least one dimension ranging from 0.1 nanometers (nm) to 500 nm.