Abstract:
A MEMS device is provided. The device includes a MEMS wafer, a top cap wafer and a bottom cap wafer. The top and bottom cap wafers are respectively bonded to first and second sides of the MEMS wafer, the MEMS and cap wafers being electrically conductive. The outer side of the top cap wafer is provided with electrical contacts. The MEMS wafer, the top cap wafer and the bottom cap wafer define a cavity for housing a MEMS structure. The device includes insulated conducting pathways extending from within the bottom cap wafer, through the MEMS wafer and through the top cap wafer. The pathways are connected to the respective electrical contacts on the top cap wafer, for routing electrical signals from the bottom cap wafer to the electrical contacts on the top cap wafer. A method of manufacturing the MEMS device is also provided.
Abstract:
A micro-electro-mechanical system (MEMS) motion sensor is provided that includes a MEMS wafer having a frame structure, a plurality of proof masses suspended to the frame structure, movable in three dimensions, and enclosed in one or more cavities. The MEMS sensor includes top and bottom cap wafers bonded to the MEMS wafer and top and bottom electrodes provided in the top and bottom cap wafers, forming capacitors with the plurality of proof masses, and being together configured to detect motions of the plurality of proof masses. The MEMS sensor further includes first electrical contacts provided on the top cap wafer and electrically connected to the top electrodes, and a second electrical contacts provided on the top cap wafer and electrically connected to the bottom electrodes by way of vertically extending insulated conducting pathways. A method for measuring acceleration and angular rate along three mutually orthogonal axes is also provided.
Abstract:
A three dimensional (3D) micro-electro-mechanical system (MEMS) device is provided. The device comprises a central MEMS wafer, and top and bottom cap wafers. The MEMS wafer includes a MEMS structure, such as an inertial sensor. The 5 top cap wafer, the bottom cap wafer and the MEMS wafers are stacked along a stacking axis and together form at least one hermetic cavity enclosing the MEMS structure. At least one of the top cap wafer and the bottom cap wafer is a silicon-on- insulator (SOI) cap wafer comprising a cap device layer, a cap handle layer and a cap insulating layer interposed between the cap device layer and the cap handle layer. At 10 least one electrically conductive path extends through the SOI cap wafer, establishing an electrical convection between an outer electrical contact provided on the SOI cap wafer and the MEMS structure.
Abstract:
Systems and methods are provided for determining the position of sensor elements in a sensor system. The sensor system includes a plurality of sensor elements. The platform comprises a plurality of MEMS IMUs, each associated with one of the sensor elements, measuring the acceleration and angular rate of the sensor elements. A controller determines the position and attitude of the sensor elements, based on the acceleration and angular rate measured by each of the MEMS IMUs.
Abstract:
The present invention provides a 3D System (“3DS”) MEMS architecture that enables the integration of MEMS devices with IC chips to form a System on Chip (SoC) or System in Package (SiP). The integrated MEMS system comprises at least one MEMS chip, including MEMS transducers, and at least one IC chip, including not only MEMS processing circuitry, but also additional/auxiliary circuitry to process auxiliary signals. The MEMS chip can include first and second insulated conducting pathways. The first pathways conduct the MEMS-signals between the transducers and the IC chip, for processing; and the second conducting pathways can extend through the entire thickness of the MEMS chip, to conduct auxiliary signals, such as power, RF, I/Os, to the IC chip, to be processed the additional circuitry.
Abstract:
A micro-electro-mechanical system (MEMS) device and a manufacturing method are provided. The device includes top and bottom cap wafers and a MEMS wafer disposed between the top cap wafer and the bottom cap wafer. The top, bottom and MEMS wafers define sidewalls of a cavity. A MEMS structure is housed within the cavity and is movable relative to the top and bottom caps. At least one electrode is provided in one of the wafers, the electrode being operatively coupled to the MEMS structure to detect or induce a movement thereof. A support structure extends through the cavity from the top cap wafer to the bottom cap wafer to prevent bowing in the top cap and bottom cap wafers.
Abstract:
A MEMS motion sensor and its manufacturing method are provided. The sensor includes a MEMS wafer including a proof mass and flexible springs suspending the proof mass and enabling the proof mass to move relative to an outer frame along mutually orthogonal x, y and z axes. The sensor includes top and bottom cap wafers including top and bottom cap electrodes forming capacitors with the proof mass, the electrodes being configured to detect a motion of the proof mass. Electrical contacts are provided on the top cap wafer, some of which are connected to the respective top cap electrodes, while others are connected to the respective bottom cap electrodes by way of insulated conducting pathways, extending along the z axis from one of the respective bottom cap electrodes and upward successively through the bottom cap wafer, the outer frame of the MEMS wafer and the top cap wafer.
Abstract:
A micro-electro-mechanical system (MEMS) magnetometer is provided for measuring magnetic field components along three orthogonal axes. The MEMS magnetometer includes a top cap wafer, a bottom cap wafer and a MEMS wafer having opposed top and bottom sides bonded respectively to the top and bottom cap wafers. The MEMS wafer includes a frame structure and current-carrying first, second and third magnetic field transducers. The top cap, bottom cap and MEMS wafer are electrically conductive and stacked along the third axis. The top cap wafer, bottom cap wafer and frame structure together form one or more cavities enclosing the magnetic field transducers. The MEMS magnetometer further includes first, second and third electrode assemblies, the first and second electrode assemblies being formed in the top and/or bottom cap wafers. Each electrode assembly is configured to sense an output of a respective magnetic field transducer induced by a respective magnetic field component.
Abstract:
A single Micro-Electro-Mechanical System (MEMS) sensor chip is provided, for measuring multiple parameters, referred to as multiple degrees of freedom (DOF). The sensor chip comprises a central MEMS wafer bonded to a top cap wafer and a bottom cap wafer, all three wafer being electrically conductive. The sensor comprises at least two distinct sensors, each patterned in the electrically conductive MEMS wafer and in at least one of the top and bottom cap wafer. Insulated conducting pathways extend from electrical connections on the top or bottom cap wafers, through at least one of the electrically conductive top cap and bottom cap wafers, and through the electrically conductive MEMS wafer, to the sensors, for conducting electrical signals between the sensors and the electrical connections. The two or more distinct sensors are enclosed by the top and bottom cap wafers and by the outer frame of MEMS wafer.
Abstract:
A three dimensional (3D) micro-electro-mechanical system (MEMS) device is provided. The device comprises a central MEMS wafer, and top and bottom cap wafers. The MEMS wafer includes a MEMS structure, such as an inertial sensor. The 5 top cap wafer, the bottom cap wafer and the MEMS wafers are stacked along a stacking axis and together form at least one hermetic cavity enclosing the MEMS structure. At least one of the top cap wafer and the bottom cap wafer is a silicon-on- insulator (SOI) cap wafer comprising a cap device layer, a cap handle layer and a cap insulating layer interposed between the cap device layer and the cap handle layer. At 10 least one electrically conductive path extends through the SOI cap wafer, establishing an electrical connection between an outer electrical contact provided on the SOI cap wafer and the MEMS structure.