Abstract:
행방향으로 2개 이상이 어레이되어 있는 와이어 브릿지 채널을 구비한 모스 트랜지스터 및 그것의 제조방법에 대하여 개시한다. 본 발명에 따른 모스 트랜지스터는 소오스/드레인 영역이 반도체 기판의 양 단부 상에 위치하고 있는 소오스/드레인 패턴에 한정되어 있고, 채널은 다수의 타원형 또는 원형의 와이어 브릿지 채널로서 소오스 영역과 드레인 영역을 연결하도록 행방향으로 2개 이상이 서로 이격되게 어레이되어 있다. 그리고, 게이트 전극은 게이트 절연막을 개재하고서 다수의 원형 또는 타원형 와이어 브릿지 채널을 둘러싸도록 소오스/드레인 패턴 사이에 형성되어 있다. 모스 트랜지스터, 멀티 브릿지 채널, 단채널 효과, 협채널 효과, FinFET, DELTA
Abstract:
다중가교채널 트랜지스터(MBCFET) 제조 방법을 제시한다. 본 발명에 따르면, 기판 상에 채널층들 및 채널층들 사이에 삽입되는 채널층간층들의 적층체를 형성하고, 적층체를 선택적으로 식각하여 상호 평행하게 가로질러 채널층 패턴들 및 채널층간층 패턴들의 제1적층부와 제1적층부 양쪽에 잔류하는 층들의 제2적층부들로 분리하는 두 트렌치(trench)들을 형성한다. 트렌치들을 채워 제2적층부들로 설정되는 제2소스/드레인 영역들에 이어지는 제1소스/드레인 영역들을 선택적 에피택셜로 성장시킨다. 제1적층부의 채널층간층 패턴들의 양 끝단면을 선택적으로 노출하고 선택적으로 제거하여 제1소스/드레인 영역 및 상기 채널층 패턴들에 의해 둘러싸인 관통 터널들을 형성한다. 관통 터널들을 채우고 제1적층부 상으로 연장되는 게이트를 게이트 유전층을 수반하여 형성한다. MBCFET, 유효 채널 길이, SEG, 더미 게이트 패턴, SiGe
Abstract:
PURPOSE: A structure of a vertical transistor and a method for forming the same are provided to control the channel length without relying upon a photolithography. CONSTITUTION: A first cylindrical semiconductor pillar(101a) is formed on a semiconductor substrate. A second cylindrical semiconductor pillar(101p) placed in the center of the first semiconductor pillar has higher height and less diameter than the first semiconductor pillar. A gate dielectric(103) is formed on the top of the first semiconductor pillar and around the second semiconductor pillar. A cylindrical gate electrode(105) having the same diameter as the first semiconductor pillar is formed on the top of the first semiconductor pillar and around the second semiconductor pillar. A first cylindrical dielectric film(109) having the same diameter as the gate electrode is formed on the top of the gate electrode and around of the second semiconductor pillar. A silicon oxide film(111) surrounds the first semiconductor pillar, the gate electrode and the first dielectric film.
Abstract:
PURPOSE: A metal oxide semiconductor transistor having three-dimensional channels and a fabricating method thereof are provided to prevent reduction of a contact area between source and drain regions by forming a trench within a semiconductor substrate. CONSTITUTION: An active region is projected from a predetermined region of a semiconductor substrate. An isolation layer(21A) is used for surrounding the active region and has a surface lower than an upper surface of the active region. At least one center trench is used for defining a plurality of channel regions recessed from a center part of the active region and a source/drain region for connecting both ends of the channel regions to each other. A gate electrode(25A) is used for covering sidewalls and upper surfaces of the channel regions across upper parts of the channel regions.
Abstract:
PURPOSE: A method for pattering a mask is provided to ensure the process margin and prevent the drop of a threshold voltage. CONSTITUTION: The method for patterning a mask comprises: forming a mask layer and a first photoresist layer subsequently on a semiconductor substrate(100); carrying out a first photoetching process using a first photomask(110) having a bar-shaped opening(112) to form a first photoresist pattern(108b) having a second bar-shaped opening; carrying out an anisotropic etching of the mask layer by using the first photoresist pattern, to form a first mask pattern having the second bar-shaped opening; forming a second photoresist layer on the substrate where the first mask pattern was formed; carrying out a second photoetching process with a second photomask having a first hole-shaped opening to provide a second photoresist pattern having a second hole-shaped opening that overlaps with the end of the second hole-shaped opening and exposes a part of the first mask pattern; and carrying out an anisotropic etching of the first mask pattern exposed through the second hole-shaped opening by using the second photoresist pattern, to form a second mask pattern having a dumbbell-shaped opening.
Abstract:
PURPOSE: A method for forming a gate electrode, a method for forming a semiconductor device having the gate electrode, and an oxidation method of a substrate are provided to be capable of improving the sidewall profile of the gate electrode. CONSTITUTION: A plurality of gate structures(110) are formed on a semiconductor substrate(100). At this time, each gate structure is completed by sequentially depositing a gate oxide pattern(102), a polysilicon pattern(104), and a metal silicide pattern(106). The first oxide layer(112) is selectively formed on the resultant structure by carrying out a re-oxidation process on the resultant structure under diluted oxygen and inert gas atmosphere. At this time, the growth rate of the first oxide layer is similar at the lateral portions of the polysilicon pattern and the metal silicide pattern. Preferably, ions of 5 or 3 group element are doped into the polysilicon pattern.
Abstract:
PURPOSE: A method for testing inter process communication(IPC) capacities is provided to take an action for a biggest influence of an IPC capacity by searching the influence, so that a user can not have to remember an internet protocol(IP) address of a specific board by making the user input a slot number of a destination board, by measuring a total packet receiving time in the destination board after starting substantial packet transmissions, and by subdividing intermediate steps according to functions to measure each taking time of the intermediate steps. CONSTITUTION: A communication system has many boards. Each of the boards has at least one processor. A method for testing inter process communication(IPC) capacities in a transmission board and a destination board, comprises the steps of: inputting a test parameter from a user; generating a data packet corresponding to the inputted parameter; obtaining an optional buffer to transmit the generated packet to the destination board; copying the generated packet in the obtained buffer; transmitting the copied packet to a Q, generated for an IPC by a processor of the destination board; making the processor of the destination board receive the transmitted packet; and calculating taken time for the buffer obtaining step, the packet copying step and the packet transmitting step, and then outputting the calculated time as result values for testing the IPC capacities.
Abstract:
본 발명은 메모리 소자의 집적도를 증대 또는 극대화할 수 있는 멀티 비트 전기 기계적 메모리 소자 및 그의 제조방법을 개시한다. 그의 제조방법은, 기판 상에 제 1 방향으로 비트 라인을 형성하는 단계; 상기 비트 라인 상에 제 1 층간 절연막을 형성하는 단계; 상기 제 1 층간 절연막 상에서 제 2 방향으로 하부 워드 라인 및 제 1 희생막을 형성하는 단계; 상기 하부 워드 라인 및 상기 제 1 희생막의 측벽에 스페이서를 형성하는 단계; 상기 비트 라인 상부에서 상기 스페이서에 의해 노출되는 상기 제 1 층간 절연막을 제거하여 상기 비트 라인이 선택적으로 노출되는 콘택홀을 형성하는 단계; 상기 콘택홀 내부에 패드 전극을 형성하는 단계; 상기 패드 전극의 상부에서 상기 제 1 방향으로 캔틸레버 전극을 형성하는 단계; 상기 하부 워드 라인 상부의 상기 캔틸레버 전극 상에서 상기 제 2 방향으로 제 2 희생막, 트랩 사이트, 및 상부 워드 라인을 형성하는 단계; 및 상기 제 1 희생막 및 제 2 희생막을 제거하여 상기 캔틸레버 전극의 상하부에 소정 공극을 만드는 단계를 포함하여 이루어진다. 스페이서(spacer), 워드 라인, 캔틸레버(cantilever), 비트 라인(bit line), 트랩 사이트(trap site)
Abstract:
A multi-bit electromechanical memory device and a manufacturing method thereof are provided to increase the integration degree of the memory device by minimizing the length of the cantilever electrode which is the switching element. A multi-bit electromechanical memory device comprises the substrate(10); the bit line formed on the top of the substrate into the first direction; the first interlayer insulating film(22) formed on the bit line; the first and the second lower part word line(30,40) formed into the second direction crossing the first direction; the spacer(24) reclaiming the both side walls of the first and the second lower part word lines; the pad electrode(52) formed within the contact hole from which the first interlayer insulating film is removed; the first and second cantilever electrodes(50) bent into the third direction perpendicular to the first and second direction; the second inter metal dielectric formed on upper part of the pad electrode; the first and the second trap site(80) supported in the second inter metal dielectric; the first and the second top word line formed on the first and the second trap site.
Abstract:
A multi-bit electromechanical memory device and a manufacturing method thereof are provided to increase the integration degree of the memory device by minimizing the length of the cantilever electrode which is the switching. A multi-bit electromechanical memory device comprises the substrate(10); the bit line(20) formed at the top of the substrate toward the first direction; the first interlayer insulating film(22) formed on the bit line; the first and the second lower part word line(30) formed on the first interlayer insulating film toward the second direction cross the first direction; the spacer(24) reclaiming the both side walls of the first and the second lower part word line; the pad electrode(52) formed within the contact hole in which the first interlayer insulating film is removed at the upper part of the bit line; the second inter metal dielectric(28) formed on the pad electrode; the first and the second trap site(80) supported in the second inter metal dielectric; the first and the second top word line(40) formed on the first and the second trap site.