Abstract:
PURPOSE: Conductive particles are provided to have excellent surface conductivity, durability, and heat resistance by physically and/or chemically combining two materials having conductivity, thereby being easily used as an electron packaging material such as an anisotropically conductive film, etc. CONSTITUTION: Conducive particles comprises a substrate particles, a carbon nanotube layer spread on a surface of the substrate particle, a plurality of metal nanoparticles combined with the carbon nanotube layer. The carbon nanotubes comprise a reactive group. The metal nanoparticles are combined with the carbon nanotube layer by covalent-bonding with the reactive group. A manufacturing method of the conductive particles comprises: a step of preparing the carbon nanotubes comprising the reactive group; a step of preparing a carbon nanotube-substrate composite particles by coating the surface of the substrate particle with the carbon nanotubes; and a step of accepting the metal nanoparticles into the carbon nanotube-substrate composite particle.
Abstract:
PURPOSE: A thiazolidinone compound with IKK-beta suppression and a pharmaceutical composition containing the same are provided to prevent and treat rheumatoid arthritis, degenerative arthritis, asthma, and cancer. CONSTITUTION: A thiazolidine-4-one derivative is denoted by chemical formula 1. A pharmaceutical composition for treating inflammatory diseases or cancer contains the compound of chemical formula 1 as an active ingredient. The inflammatory diseases include rheumatoid arthritis, degenerative arthritis, asthma, or chronic obstructive lung diseases. A method for preparing the thiazolidione compound comprises: a step of cyclizing aryl thiourea compound of chemical formula 2 with ethyl 2-chloroacetate or prepare 2-arylimino-thiazolidine-4-one compound of chemical formula 3 or 4; a step of condensing the compound of chemical formula 3 or 4 with aryl aldehyde compound of chemical formula 5.
Abstract:
PURPOSE: A dye sensitized solar cell and a manufacturing method thereof are provided to include an electrode structure which has a catalytic function and excellent conductivity, thereby improving photoelectric conversion efficiency of the solar cell. CONSTITUTION: A first electrode structure(10) comprises a conductive layer(101) and a front substrate(103). A nano wire(1011) comprises a first nano wire(1011a) and a second nano wire(1011b). The height of an overlapped part(1013) is smaller than the sum of diameters of the first nano wire and the second nano wire. A photoelectric conversion layer(20) comprises a plurality of pores(201), a dye(203), and an electrolyte(205). A second electrode structure(30) comprises an electrode layer(301) and a rear substrate(303).
Abstract:
PURPOSE: A manufacturing method of a conductive film and the conductive film are provided to simply manufacture the conductive film by mixing carbon nanotubes and a metal wire, and to improve the conductivity and the durability of the film. CONSTITUTION: A manufacturing method of a conductive film(100) comprises the following steps: pre-treating carbon nanotubes(121) by cutting with a ultrasonic wave or reacting with acid; dispersing the carbon nanotubes to a solvent; mixing a metal wire(122) with the carbon nanotube dispersed solution; and forming an electrode layer(120) by coating the carbon nanotube dispersed solution to a substrate(110).
Abstract:
PURPOSE: A manufacturing method of a conductive film, and the conductive film are provided to manufacture the conductive film with the improved optical permeability and the uniform conductivity on the surface. CONSTITUTION: A manufacturing method of a conductive film comprises the following steps; dispersing carbon nanotubes to a solvent; mixing a segregation-inducing material to the solvent; and forming an electrode layer by coating the carbon nanotube dispersed solution including the segregation-inducing material on a substrate. The conductive film includes a transparent substrate(110), and the electrode layer(120).
Abstract:
PURPOSE: A latent hardener composite particle, a method for manufacturing the same, and a one pack type epoxy resin using the same are provided to have a simple process in comparison with a conventional wet method and to remarkably enhance conversion stability by forming as a dense protective layer. CONSTITUTION: A latent hardener composite particle includes a hardening agent which is a core material, a protective film covering the outer side of the hardener, and a shell including filling paraticles which are physicochemically combined on the protective film through mechanofusion. A part of the filling particles are stuck in the protective film to increase the density of the protective film. The hardener includes an amine-based adduct, a dicyandiamide-based material, a dihydride compound, or a dichlorophenyldimethyl urea compound. The protective film includes an isocyanate compound.
Abstract:
본발명은탄소나노소재-고분자복합소재내의탄소나노소재의정량적으로수치화된분산도를얻을수 있는분산도측정방법에관한것이다. 본발명의여러구현예에따르면, 종래탄소나노소재-고분자복합소재내의탄소나노소재의일부분만측정되거나물성을예측하기어려운문제점을해결할수 있고, 탄소나노소재를직접적으로확인하고정량화시켜분산도를측정할수 있어분산도를수치화할수 있으며, 이에따라탄소나노소재-고분자복합소재의신뢰성평가에중요한기술로응용할수 있는효과를달성할수 있다.
Abstract:
전도성 복합체 및 그 제조방법이 제공된다. 네마틱 구조를 갖는 나노입자 구조체; 및 상기 나노입자 구조체의 기공내에 침투된 고분자를 포함하는 전도성 복합체는 인장 변형시에도 안정한 저항 변화율을 가지며, 이를 이용하여 유연성 전자소자를 제조할 수 있다.