Abstract:
A high speed serializing-deserializing system and a method thereof are provided to perform serializing-deserializing at high speed without the deterioration of performance even through the N becomes a large number in case the N bit parallel data transmitted from the outside. An N:1 serializer(10) includes a plurality of serializers and converts the N bit parallel data transmitted from the outside and a strobe signal to the serial data by multiplexing. A serialized link(20) transmits the serial data converted from the serializer and the strobe signal. A 1:N deserializer(30) includes a plurality of deserializers and converts the serial data and the strobe signal transmitted from the transmitting link into the parallel data. The N:1 serializer time-divides the plurality of 4:1 serializers and serializes the plurality of 4:1 serializers. The N:1 serializer sets the serialization ratio about the N bit parallel data to a multiple of four by a serial rate data signal.
Abstract:
본발명은유기물자기조립공정을통해메타물질을제조하는메타물질의제조방법, 및이로부터제조된고굴절률메타물질에관한것으로, 목표하는형상의메타물질을매우용이하게제조할수 있을뿐만아니라, 특정형태의단위요소가수 나노미터사이즈의주기를가지도록조절할수 있다. 또한, 이로부터제조되는메타물질은가시광영역및 적외선영역의파장에서높은굴절률을가질수 있다.
Abstract:
본발명은빛의조사를통하여기판에분자자기조립을인가하여패턴을형성하는패턴제조방법에관한것으로서, 매우높은열구배를가질수 있고, 원하는부분및 국소부분에배향을임의로조절할수 있으며, 배향조절도를향상시킬수 있다. 따라서사전포토레지스트패턴이나, 화학적패턴없이, 단순드레깅을통해다양한회로패턴구현이가능하며, 평탄한기판외에도휘어지는기판과같은 3차원적인구조의기판에서도구현가능하고, 특별한환경의제약없이공정이가능하다.
Abstract:
혼합 블록공중합체 박막 제조방법, 혼합 블록공중합체 주형 제조방법 및 이에 의하여 제조된 혼합 블록공중합체 박막 및 주형이 제공된다. 본 발명에 따른 혼합 블록공중합체 박막 제조방법은 고분자량의 긴 사슬길이를 가지며 자기조립된 제 1 블록공중합체에, 상기 제 1 블록공중합체에 비하여 저분자량이며, 짧은 길이를 갖는 대칭성의 제 2 블록공중합체를 혼합하여 혼합액을 제조하는 단계; 상기 혼합액을 기판 상에 적층하여, 블록공중합체 박막을 형성하는 단계; 및 상기 형성된 블록공중합체 박막을 열처리하여 자기조립하는 단계를 포함하는 것을 특징으로 한다.
Abstract:
A method for manufacturing patterns by using transfer layers is disclosed. The method for manufacturing the patterns according to the present invention comprises the steps of forming transfer layers on a first substrate and forming pattern layers on the formed transfer layers. According to the present invention, a two-dimensional transfer layer is formed on a substrate in which a first pattern is manufactured, the transfer layer is separated from the substrate in which the patterns are manufactured, and the same is transferred to the other substrate. Thus, patterns can be formed on a flexible substrate, an uneven substrate, or a macromolecular substrate. Furthermore, the present invention inserts the transfer layer between the substrate and a two-dimensional sheet (film) to solve the limit of the substrate when nanostructure based on an existing block copolymer self-assembly is manufactured. A nanopattern structure can be manufactured on the uneven substrate or the flexible substrate by using a block copolymer and a nanotemplate capable of being applied with a minute size such as PDMS by using the nanopattern can be manufactured according to the present invention. [Reference numerals] (AA) Forming a transfer layer on a first substrate;(BB) Forming a pattern layer on the formed transfer layer;(CC) Separating the transfer layer from the first substrate;(DD) Transferring the separated transfer layer to a second substrate
Abstract:
Provided is a method for manufacturing a nanostructure using a two-dimensional transfer layer. The method includes a step of laminating a two-dimensional transfer layer on a substrate, a step of laminating a molded film on the laminated two-dimensional transfer layer and manufacturing a nanomold by patterning the film, and a step of forming a nanostructure by laminating nanomaterials on the nanomold. [Reference numerals] (AA) Laminating two-dimensional sacrificing layer on a substrate;(BB) Laminating a molded film, and manufacturing a nanomold by patterning;(CC) Forming a nanostructure by laminating nanomaterials on the nanomold
Abstract:
PURPOSE: A method for manufacturing a graphene nano structure using a self-assembling material is provided to obtain a parallel type graphene nano structure by applying a lithography process with respect to a graphene or graphene oxide thin film. CONSTITUTION: A graphene thin film is formed on a substrate. A self-assembling material thin film is formed on the graphene thin film. A self-assembling material includes block copolymer, peptide, virus, and protein. The self-assembling material is thermally treated at temperature between 200 and 300 degrees Celsius for 40 to 60 hours or undergoes a solvent-annealing process. A self-assembling nano structure is formed. The graphene thin film is etched using the self-assembling nano structure as a mask.
Abstract:
PURPOSE: A computer system which can control power combined to a neuro-fuzzy system and a parallel processing processor are provided to perform only in a processor which needs a parallel process of limited data among input data applied to a neuro network technique and a fuzzy technique. CONSTITUTION: A neuro-fuzzy system(110) includes at least two among a neural network block(111), a fuzzy logic block(112) and a neuro-fuzzy block(113). A parallel processor(120) includes a plurality of processing units(121). A network on chip(130) is connected between the neuro-fuzzy system and the parallel processing processor. The network on chip performs data communication among the neuro-fuzzy system, the parallel processing processor and a power supply unit(160).
Abstract:
본 발명은 영상 처리 기술에 관한 것으로, 보다 구체적으로는 영상에서 복수개의 물체를 감지하는 기술에 관한 것이다. 본 발명에 따른 영상처리장치에 입력된 영상에서 복수의 물체를 감지하는 방법은, 상기 입력 영상의 정적 특성과 동적 특성을 이용하여 현출 맵(saliency map)을 생성하는 단계, 상기 현출 맵에서 설정된 기준값 이상의 현출도를 갖는 점을 시드점으로 정하여 하나 이상 선택하는 단계, 상기 시드점 각각에 대해, 상기 입력 영상에서 상기 시드점과 그 주변 점들의 유사도를 평가하여 상기 시드점과 유사한 것으로 판단된 점으로 이루어진 유사영역을 판정하는 단계 및 상기 유사영역을 물체 영역으로 판단하는 단계를 포함한다. 물체 감지, 영상처리, 현출 맵