Abstract:
Verfahren zur Erzeugung von Synthesegas (5) beim dem ein kohlenwasserstoffhaltiges Koksgas (2) und ein kohlendioxidhaltiges Konvertergas (4) in eine erste Reaktionszone (Z1) eingeleitet werden und Wasserstoff, enthalten im kohlenwasserstoffhaltigen Koksgas (2), zumindest teilweise mit Kohlendioxid zu Wasser und das Wasser mit dem Kohlenwasserstoff thermisch zu Synthesegas, welches Kohlenmonoxid und Wasserstoff enthält, umgesetzt werden. Sowie dass in einer zweiten Reaktionszone (Z2) ein sauerstoffhaltiges Gas (3) eingeleitet wird und mit diesem und einem Teil des Wasserstoff aus der ersten Reaktionszone (Z1) thermische Energie erzeugt wird, wobei, die die in der zweiten Reaktionszone (Z2) erzeugte thermische Energie der ersten Reaktionszone (Z1) zugeführt wird.
Abstract:
The invention relates to a process for utilizing a hydrocarbon-containing and/or carbon dioxide-containing blast furnace gas, accompanying gas and/or biogas, characterized in that hydrocarbon-containing and/or carbon dioxide-containing blast furnace gas, accompanying gas and/or biogas is introduced into a reaction chamber, and the multicomponent mixture present in the blast furnace gas, accompanying gas and/or biogas is converted in a high-temperature zone at temperatures of above 1000°C and in the presence of a support into a product-gas mixture which consists of more than 95% by volume CO, CO 2 , H 2 , H 2 O, CH 4 and N 2 , and optionally into a carbon-containing solid of which more than 75% by weight, based on the total mass of the carbon-containing solid, is deposited onto the support, wherein the flow velocity of the gas mixture blast furnace gas, accompanying gas and/or biogas in the reaction zone is less than 20 m/s.
Abstract:
The invention relates to a method for autothermal gas phase dehydrogenation of a hydrocarbon-containing gas stream (2) with an oxygen-containing gas stream (3), obtaining a reaction gas mixture in the presence of a heterogeneous catalyst which is constructed as a monolith (4), and regeneration of the catalyst in a reactor (1) in the form of a cylinder or prism, wherein: - the interior of the reactor (1) is subdivided by a plain cylindrical or prismatic gas-tight housing (G) that is arranged in the longitudinal direction of the reactor (1) into; - an internal region A and; - an external region B arranged coaxially to the internal region A, which is characterized in that the reactor is operated alternately in the production mode for the autothermal gas phase dehydrogenation, and in the regeneration mode, wherein: - the production mode for the autothermal gas phase dehydrogenation is run until the temperature elevation of the reaction gas mixture on exit of same from the discharge line (11) does not exceed 5 K, based on the time point from which the conversion rate fluctuates by no more than 1%, based on the final conversion rate, whereupon; - the reactor is switched into the regeneration mode, with supply of an inert regeneration gas which contains at least 10% by weight oxygen, based on the total weight of the regeneration gas.
Abstract:
The invention relates to a reactor (1) in the form of a horizontal cylinder (3) for carrying out autothermal gas phase dehydration of a hydrocarbon-containing gas flow (2) with an oxygen-containing gas flow (3), yielding a reaction gas mixture, at a heterogeneous catalyst designed as a monolith (4), wherein the inner chamber of the reactor (1) is divided by a removable, circular cylindrical or prismatic housing G, which is disposed in the longitudinal direction of the reactor (1) and is gas-tight in the circumferential direction, into an inner area A having one or more catalytically active zones (5), in each of which a package of monoliths (4) stacked on each other, adjacent to each other, and arranged one behind the other is provided, a mixing zone (6) having fixed installed fixtures being provided in front of each active zone (5), and into an outer area B disposed coaxially to the inner area A, and wherein a heat exchanger (12) connected to the housing G is provided at an end of the reactor, characterized in that an inert gas is supplied to the outer area B.
Abstract:
The present invention relates to processes for recovering H 2 from converting NH 3 in an apparatus, the processes comprising one or more process stages, and an apparatus for these processes.