Abstract:
A semiconductor light-emitting device comprises an epitaxial structure comprising an main light-extraction surface, a lower surface opposite to the main light-extraction surface, a side surface connecting the main light-extraction surface and the lower surface, a first portion and a second portion between the main light-extraction surface and the first portion, wherein a concentration of a doping material in the second portion is higher than that of the doping material in the first portion and, in a cross-sectional view, the second portion comprises a first width near the main light-extraction surface and second width near the lower surface, and the first width is smaller than the second width.
Abstract:
An optoelectronic device comprises an optoelectronic system for emitting a light and a semiconductor layer on the optoelectronic system, wherein the semiconductor layer comprises a metal element of Ag and an atomic concentration of Ag in the semiconductor layer is larger than 1*1016 cm−3.
Abstract:
A manufacturing method of a light-emitting device is disclosed. The method provides for patterning a semiconductor stack on a first substrate in order to form multiple light-emitting mesas. A second substrate is then bonded to the multiple light-emitting mesas and a reflective structure is formed on the first substrate. A metal layer is then applied on the reflective structure and the metal layer is patterned to form multiple metal mesas corresponding to the multiple light-emitting mesas, with a portion of the reflective structure being exposed.
Abstract:
A light-emitting device of an embodiment of the present application comprises a substrate; a first semiconductor light-emitting structure formed on the substrate, wherein the first semiconductor light-emitting structure comprises a first semiconductor layer having a first conductivity type, a second semiconductor layer having a second conductivity type and a first active layer formed between the first semiconductor layer and the second semiconductor layer, wherein the first active layer is capable of emitting a first light having a first dominant wavelength; and a first thermal-sensitive layer formed on a path of the first light, wherein the first thermal-sensitive layer comprises a material characteristic which varies with a temperature change.
Abstract:
Disclosed is a light-emitting device comprising: a light-emitting stack with a length and a width comprising: a first conductivity type semiconductor layer; an active layer on the first conductivity type semiconductor layer; and a second conductivity type semiconductor layer on the active layer; a conductive layer with a width greater than the width of the first conductivity type semiconductor layer and under the first conductivity type semiconductor layer, the conductive layer comprising a first overlapping portion which overlaps the first conductivity type semiconductor layer and a first extending portion which does not overlap the first conductivity type semiconductor layer; a transparent conductive layer with a width greater than the width of the second conductivity type semiconductor layer over the second conductivity type semiconductor layer, the transparent conductive layer comprising a second overlapping portion which overlaps the second conductivity type semiconductor layer and a second extending portion which does not overlap the second conductivity type semiconductor layer; a first electrode substantially joined with only the first extending portion or a part of the first extending part; and a second electrode substantially joined with only the second extending portion or a part of the second extending portion.
Abstract:
A light-emitting device includes a semiconductor light-emitting stack; a current injected portion formed on the semiconductor light-emitting stack; an extension portion having a first branch radiating from the current injected portion and a second branch extending from the first branch; an electrical contact structure between the second branch and the semiconductor light-emitting stack and having a first width; and a current blocking structure located right beneath the electrical contact structure and having a second width larger than the first width.