Abstract:
A heterogeneously integrated semiconductor devices includes a base substrate; a Ge-containing film formed on the base substrate; a PMOSFET transistor having a first fin formed on the Ge-containing film; and a NMOSFET transistor having a second fin formed on the Ge-containing film; wherein the PMOSFET transistor and the NMOSFET transistor compose a CMOS transistor, and the first fin comprises Ge-containing material and the second fin comprises a Group III-V compound.
Abstract:
A light-emitting device is provided. comprises: a light-emitting stack comprising an active layer emitting a first light having a first peak wavelength λ nm; and an adjusting element stacked on and electrically connected to the active layer, wherein the adjusting element comprises a diode emitting a second light having a second peak wavelength between 800 nm and 1900 nm; wherein a forward voltage of the light-emitting device is between (1240/0.8λ) volt and (1240/0.5λ) volt, and a ratio of the intensity of the first light emitted from the active layer at the first peak wavelength to the intensity of the second light emitted from the diode at the second peak wavelength is greater than 10 and not greater than 1000.
Abstract:
A heterogeneously integrated semiconductor devices includes a base substrate; a Ge-containing film formed on the base substrate; a PMOSFET transistor having a first fin formed on the Ge-containing film; and a NMOSFET transistor having a second fin formed on the Ge-containing film; wherein the PMOSFET transistor and the NMOSFET transistor compose a CMOS transistor, and the first fin comprises Ge-containing material and the second fin comprises a Group III-V compound.
Abstract:
A semiconductor light-emitting device comprises an epitaxial structure for emitting a light and comprises an edge, a first portion and a second portion surrounding the first portion, wherein a concentration of a doping material in the second portion is higher than that of the doping material in the first portion, a main light-extraction surface on the epitaxial structure and comprises a first light-extraction region corresponding to the first portion and a second light-extraction region corresponding to the second portion and an edge, wherein the second portion is between the edge and the first portion.
Abstract:
A light-emitting device disclosed herein comprises a substrate, an active layer formed on the substrate and including a first quantum well, a second quantum well and a barrier layer disposed between the first quantum well and the second quantum well. The barrier layer includes a first region adjacent to the first quantum well, a third region adjacent to the second quantum well and a second region disposed between the first region and the third region and comprising Sb.
Abstract:
A semiconductor substrate is provided in the present disclosure. The semiconductor substrate includes a first semiconductor layer and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer has a first lattice constant (L1) and the second semiconductor layer has a second lattice constant (L2). A ratio of a difference (L2-L1) between the second lattice constant (L2) and the first lattice constant (L1) to the first lattice constant (L1) is greater than 0.036.
Abstract:
This application is related to a method of manufacturing a solar cell device comprising providing a substrate comprising Ge or GaAs; forming a first tunnel junction on the substrate, wherein the first tunnel junction comprises a first n-type layer comprising InGaP:Te, and a first alloy layer comprising AlxGa(1−x)As and having a lattice constant; adding a material into the first alloy layer to change the lattice constant; and forming a first p-n junction on the first tunnel junction.
Abstract:
A light-emitting device is provided. The light-emitting device comprises: a light-emitting stack having an active layer emitting first light having a peak wavelength λ nm; and an adjusting element stacked electrically connected to the active layer in series for tuning a forward voltage of the light-emitting device; wherein the forward voltage of the light-emitting device is between (1240/0.8λ) volt and (1240/0.5λ) volt.
Abstract:
A light-emitting diode, comprises an active layer for emitting a light ray; an upper semiconductor stack on the active layer, wherein the upper semiconductor stack comprises a window layer; a reflector; and a lower semiconductor stack between the active layer and the reflector; wherein the thickness of the window layer is small than or equal to 3 μm, and the thickness of the lower semiconductor stack is small than or equal to 1 μm.
Abstract:
A method for making a light-emitting device is provided. The method comprises the steps of providing a substrate, forming a nucleation layer on the substrate, forming a semiconductor stack on the nucleation layer, and separating the semiconductor stack from the nucleation layer to expose the nucleation layer.