Abstract:
A wireless communication method and system for controlling the current data bit rate of a radio link (RL) to maintain the quality of the RL. The system includes a core network (CN), a radio network controller (RNC) and at least one wireless transmit/receive unit (WTRU). The RL is established between the RNC and the WTRU. The RNC establishes a guaranteed data bit rate, a maximum data bit rate and a current data bit rate associated with the RL. When the RNC senses an event which indicates that the quality of the RL has substantially deteriorated, the RNC reduces the value of the current data bit rate. Then, in a recovery process, if a similar event does not occur during an established waiting period, the RNC restores the current data bit rate back to the maximum data bit rate.
Abstract:
At least one desired communication signal is received by a receiver. The at least one desired communication signal is transmitted in a wireless format of a cell. A plurality of communication signals are received. Communication signals are selected from the plurality. The selected communication signals include each desired communication signal and at least one communication signal originating from another cell. A channel estimate is produced for each selected communication signal. Data is jointly detected for the selected communication signals.
Abstract:
A physical channel of a user service is provided for assignment to a set of time slots in a hybrid time division multiple access/code division multiple access wireless communication system. A measure of interference is determined for each of the set of time slots. A fragmentation parameter is provided. The fragmentation parameter represents a preference for fragmenting user service physical channels over time slots. The user service physical channel is assigned to one of the set of time slots using the measured interference associated with each of the set of time slots and the fragmentation parameter.
Abstract:
An uplink signal may be transmitted by a user equipment (UE) in a time interval using an uplink control channel. The uplink signal may include hybrid automatic repeat request (H-ARQ) control information related to received downlink data. If the UE determines that information indicating a coding and modulation is to be transmitted at a same time interval as the H-ARQ control information, the uplink signal may include the information that indicates the coding and modulation.
Abstract:
The present invention is related to a method and apparatus for implementing space frequency block coding (SFBC) in an orthogonal frequency division multiplexing (OFDM) wireless communication system. The present invention is applicable to both a closed loop mode and an open loop mode. In the closed loop mode, power loading and eigen-beamforming are performed based on channel state information (CSI). A channel coded data stream is multiplexed into two or more data streams. Power loading is performed based on the CSI on each of the multiplexed data streams. SFBC encoding is performed on the data streams for each of the paired subcarriers. Then, eigen-beamforming is performed based on the CSI to distribute eigenbeams to multiple transmit antennas. The power loading may be performed on two or more SFBC encoding blocks or on each eigenmodes. Additionally, the power loading may be performed across subcarriers or subcarrier groups for weak eigenmodes.
Abstract:
A method and system for assigning uplink (UL) slots (36-1 - 36-15) to optimize time division duplex (TDD) UL power. In order to assure proper power control gain, UL slots (36-1 - 36-15) are judiciously allocated close to the beacon slot. The UL slots (36-1 - 36-15) may be allocated based on channel sensing. All users are sorted in the order of reducing fading losses. Sorting information is also used to allocate the UL slots (36-1 - 36-15). The UL slots (36-1 - 36-15) may also be allocated based on signal interference information, code usage availability estimates and spread signal interference values. Alternatively, block error rate (BLER) and signal to interference ratio (SIR) measurements may be used to allocate the UL slots (36-1 - 36-15).
Abstract:
A wireless digital communication method for communicating between a base station (12) and a plurality of user equipment mobile terminals (UEs 30) and employs adaptive modulation and coding to achieve improved radio resource utilization and provide optimum data rates for user services. Blocks of downlink (DL) data are received by the base station which requests downlink DL channel quality measurements only from those mobile terminals (30) with pending downlink transmissions. The UEs respond to the request by measuring and reporting DL Channel quality to the base station, which then allocates resources such that the UEs will make best use of radio resources. The base station notifies the UEs of the physical channel allocation indicating the modulation/coding rate and allocated slots followed by transmission of blocks of downlink data which are transmitted to the UEs.
Abstract:
A peer-to-peer communication system using a direct link setup (DLS) is disclosed. A mobile station (STA) establishes a direct communication link with another STA by sending a message requesting a DLS to an access point (AP), (i.e., a centralized controller). The AP may accept or reject the DLS request based on channel measurements. If the DLS request is accepted, the DLS is established such that the STAs may directly communicate with each other. An established DLS connection may be torn down by the AP sending a message including a DLS teardown request to one of the STAs, or based on channel measurements. The system may be an Ad hoc network comprising a plurality of STAs without an AP where each STA maintains a database of one-hop and two-hop STAs, and establishes a direct link to other STAs after informing neighboring STAs of an intention to establish a direct communication link.
Abstract:
A time division duplex method for determining whether to initiate handover of a mobile unit from a serving base station to a target base station, the method comprises receiving the broadcast channel (52) from the serving base station (BCHser); calculating (54) the serving base station received signal code power (RSCPser); receiving the broadcast channel (56) from the target base station (BCHtar); calculating the target base station (58) received signal code power (RSCPtar); determining interference signal code power (60) for the serving base station (ISCPser); determining interference signal code power (60) for the target base station (ISCPtar); calculating (62) RSCPser/ISCPser; calculating (62) RSCPtar/ISCPtar; and determining whether RSCPser/ISCPser is less than RSCPtar/ISCPtar, and if so, commencing handover (68) from the serving base station to the target base station.
Abstract:
A wireless code division multiple access communication system is modeled. A plurality of snapshots is provided. Each snapshot has a plurality of user equipments (UEs) and base stations. The locations of the UEs in a snapshot vary between the snapshots. For each snapshot, the UEs are assigned to base stations. Resources are sequentially assigned to each UE or groups of UEs (step 28) and a transmission power level for each UE is determined (step 30). For each sequential assignment, an updated transmission power level for any previously assigned UEs is determined. Dropped, served and not admitted (blocked) UEs in the snapshot are determined. Statistics on the performance of the system are gathered using the determined dropped, served and blocked UEs.