Abstract:
Back contact back junction three dimensional solar cell and methods for manufacturing are provided. The back contact back contact back junction three dimensional solar cell comprises a three-dimensional substrate. The substrate comprises a light capturing frontside surface with a passivation layer, a doped base region, and a doped backside emitter region with a polarity opposite the doped base region. A backside passivation layer is positioned on the doped backside emitter region. Backside emitter contacts and backside base contacts connected to metal interconnects and selectively formed on three-dimensional features of the backside of three-dimensional solar cell.
Abstract:
A back contact solar cell is described which includes a semiconductor light absorbing layer; a first-level metal layer (Ml), the Ml metal layer on a back side of the light absorbing layer, the back side being opposite from a front side of the light absorbing layer designed to receive incident light; an electrically insulating backplane sheet backside of said solar cell with the Ml layer, the backplane sheet comprising a plurality of via holes that expose portions of the Ml layer beneath the backplane sheet; and an M2 layer in contact with the backplane sheet, the M2 layer made of a sheet of pre-fabricated metal foil material comprising a thickness of between 5-250 μm, the M2 layer electrically connected to the Ml layer through the via holes in the backplane sheet.
Abstract:
Various laser processing schemes are disclosed for producing various types of hetero-junction emitter and homo-junction emitter solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.
Abstract:
A back contact back junction solar cell using semiconductor wafers and methods for manufacturing are provided. The back contact back junction solar cell comprises a semiconductor wafer having a doped base region, a light capturing front side surface, and a doped backside emitter region. A front side and backside dielectric layer and passivation layer provide enhance light trapping and internal reflection. Backside base and emitter contacts are connected to metal interconnects forming a metallization pattern of interdigitated fingers and busbars on the backside of the solar cell.
Abstract:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.