Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a thermoplastic first polymer onto the frontside surface and into each hole; (ii) reflowing the first polymer; (iii) exposing the wafer substrate to a controlled oxidative plasma; (iv) optionally repeating steps (i) to (iii); (v) depositing a layer of a photoimageable second polymer; (vi) selectively removing the second polymer from regions outside a periphery of the holes using exposure and development; and (vii) planarizing the frontside surface to provide holes filled with a plug comprising the first and second polymers, which are different than each other. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
A process for filling one or more etched holes defined in a frontside surface of a wafer substrate. The process includes the steps of: (i) depositing a layer of a thermoplastic first polymer onto the frontside surface and into each hole; (ii) reflowing the first polymer; (iii) exposing the wafer substrate to a controlled oxidative plasma; (iv) optionally repeating steps (i) to (iii); (v) depositing a layer of a photoimageable second polymer; (vi) selectively removing the second polymer from regions outside a periphery of the holes using exposure and development; and (vii) planarizing the frontside surface to provide holes filled with a plug comprising the first and second polymers, which are different than each other. Each plug has a respective upper surface coplanar with the frontside surface.
Abstract:
A non-abrading method to facilitate bonding of semiconductor components, such as silicon wafers, that have micro structural defects in a bonding interface surface. In a preferred method, micro structural defects are removed by forming an oxide layer on the bonding interface surface to a depth below the level of the defect, and then removing the oxide layer to expose a satisfactory surface for bonding, thereby increasing line yield and reducing scrap triggers in fabrication facilities.
Abstract:
The present invention relates to MEM switches. More specifically, the present invention relates to a system and method for making MEM switches having a common ground plane. One method for making MEM switches includes: patterning a common ground plane layer on a substrate; forming a dielectric layer on the common ground plane layer; depositing a DC electrode region through the dielectric layer to contact the common ground plane layer; and depositing a conducting layer on the DC electrode region so that regions of the conducting layer contact the DC electrode region, so that the common ground plane layer provides a common ground for the regions of the conducting layer.
Abstract:
A method for producing optically planar surfaces for micro-electromechanical system devices (MEMS), comprising the steps of: depositing a first layer over a substrate; forming a channel in the first layer wherein the channel has a depth defined by a thickness of the first layer and a width greater than 10 microns; depositing a second layer over the first layer wherein the second layer has a thickness greater than the depth of the channel and is composed of a different material than the first layer; removing the second layer from outside the channel leaving an overlap at the edge of the channel; and polishing the second layer that fills the channel to obtain an optically planar surface for the MEMS device.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
Embodiments of the present invention provide a method of processing a surface of a polysilicon and a method of processing a surface of a substrate assembly. The method of processing a surface of a polysilicon includes forming a material film on the surface of the polysilicon; and processing, by using a chemico-mechanical polishing technology, the surface of the polysilicon on which the material film is formed. The material film is selected such that the polysilicon is preferentially removed in a polishing process.
Abstract:
Methods of reversing the tone of a pattern having non-uniformly sized features. The methods include depositing a highly conformal hard mask layer over the patterned layer with a non-planar protective coating and etch schemes for minimizing critical dimension variations.
Abstract:
A MEMS device includes a first substrate structure and a second substrate structure. The first substrate structure has a conductive microstructure and an oxide material surrounding lateral side of the conductive microstructure. A thickness of the conductive microstructure and a thickness of the oxide material are approximately equivalent. The second substrate structure has an active region of the MEMS device, and the second substrate structure is coupled in spaced apart relationship with the first substrate structure to produce a cavity between the structures. The active region of the MEMS device is suspended above the cavity and the conductive microstructure underlies the cavity. The conductive microstructure is formed from a polysilicon structure layer and a local oxidation of silicon process is implemented to thermally grow the oxide material using the polysilicon of the structural layer. The second substrate structure may be coupled to the first substrate structure by fusion bonding.