Abstract:
A vehicle is disclosed. The vehicle includes a first indicator light associated with a first function or a first state of the vehicle (e.g., a brake light), and circuitry coupled to the first indicator light. The circuitry is configured to cause the first indicator light to emit light when the vehicle is performing the first function or is operating in the first state, and detect an amount of light incident on the first indicator light. Thus, the indicator light can be used to detect incoming light to perform various vehicle functions (e.g., automatically dimming mirrors based on the incoming light) without the need for a dedicated light sensor.
Abstract:
Die Erfindung betrifft ein Gonioradiometer zur richtungsabhängigen Messung mindestens einer lichttechnischen oder radiometrischen Kenngröße einer optischen Strahlungsquelle (2), welches aufweist: eine Vorrichtung zum Bewegen einer Strahlungsquelle (2) während eines Messvorgangs um eine erste Achse (31) und um eine senkrecht auf der ersten Achse (31) stehende zweite Achse (32); eine Messwand (5) mit homogener Reflexion, an der das Licht der Strahlungsquelle (2) reflektiert wird; und eine ortsfest und unbeweglich angeordnete Kamera (7) mit einer Optik (8) und einem 2-dimensionalen Sensor-Chip (100). Dabei ist die Kamera (7) derart angeordnet, dass sie an der Messwand (5) reflektiertes Licht erfasst, wobei das reflektierte Licht von der Optik (8) der Kamera (8) auf den Sensor-Chip (100) der Kamera (7) abgebildet wird, und wobei der Sensor-Chip (100) bei Rotation der Strahlungsquelle (2) während eines Messvorgangs Messwerte aufnimmt, die die lichttechnische oder radiometrische Kenngröße im Wesentlichen auf einer Kugeloberfläche um den Strahlungsschwerpunkt der Strahlungsquelle (2) angeben. Die Erfindung betrifft des Weiteren ein Verfahren und Gonioradiometer zur richtungsabhängigen Messung mindestens einer lichttechnischen oder radiometrischen Kenngröße einer optischen Strahlungsquelle (2), bei denen vorgesehen ist, dass das mindestens zwei fest installierte Sensoren (1, 100) eingesetzt werden, die bei einer Messung simultan Messwerte bereitstellen.
Abstract:
Une matrice de photodétecteur (1) est organisée selon un premier axe d'organisation sur un substrat (6) semi-conducteur d'un premier type de conductivité. Chaque photodétecteur (1) est au moins partiellement réalisé dans le substrat (6) qui formant une première électrode du photodétecteur. Un anneau (2) périphérique de polarisation est formé autour de la matrice de photodétecteurs (1 ). L'anneau (2) de polarisation est connecté à un générateur (3) de tension de polarisation et au substrat (6). Un circuit de lecture est connecté à un photodétecteur par l'intermédiaire de la seconde borne du photodétecteur. Un premier interrupteur connecte le photodétecteur (1 ) à un générateur (9) de tension additionnelle (VW). Un second interrupteur connecte le photodétecteur (1 ) au circuit de lecture associé. Le premier et le second interrupteurs (7, 8) sont dans des états opposés.
Abstract:
A computer based system for testing an optical monitoring system includes a program (212) having program instructions and optical monitoring system parameters, for implementing a plurality of tests of an optical monitoring system. A computer (202) includes at least one processor for executing the program instructions, storage components for storing program instructions and test data, including the optical system parameters, a user input for inputting commands, and a display for displaying a menu of available test commands, test results and other data. An interface (210) is provided for interfacing the optical monitoring system to the computer for exchange of control and data signals. A fixture (208) is provided for mounting the optical monitoring system during testing.
Abstract:
A photodetection circuit includes an avalanche photodiode and a mode switching circuit that may be configured to selectively switch an operating mode of the photodetection circuit between linear mode and Geiger mode. The photodetection circuit may further include a quenching circuit configured to quench and reset the avalanche photodiode in response to an avalanche event when the photodetection circuit is operated in Geiger mode. The photodetection circuit may additionally include an integration circuit configured to integrate photocurrent output by the photodiode and generate integrated charge units when the photodetection circuit is operated in linear mode. The photodetection circuit may also include a counter configured to count pulses output by the avalanche photodiode when the photodetection circuit is operated in Geiger mode and to count integrated charge units generated by the integration circuit when the photodetection circuit is operated in linear mode.
Abstract:
A 2-D sensor array includes a semiconductor substrate and a plurality of pixels disposed on the semiconductor substrate. Each pixel includes a coupling region and a junction region, and a slab waveguide structure disposed on the semiconductor substrate and extending from the coupling region to the region. The slab waveguide includes a confinement layer disposed between a first cladding layer and a second cladding layer. The first cladding and the second cladding each have a refractive index that is lower than a refractive index of the confinement layer. Each pixel also includes a coupling structure disposed in the coupling region and within the slab waveguide. The coupling structure includes two materials having different indices of refraction arranged as a grating defined by a grating period. The junction region comprises a p-n junction in communication with electrical contacts for biasing and collection of carriers resulting from absorption of incident radiation.
Abstract:
An apparatus for detecting the presence of carryover particles in an upper region of a furnace, such as a smelt bed boiler (10), includes plural spaced apart detectors (52). These detectors monitor discrete portions of the interior of the furnace for the purpose of detecting carryover particles in such monitored portions. Signals indicative of the carryover particles are processed to obtain a count of the carryover particles. The carryover particle count may then be displayed. For example, the signals from all of the detectors may be averaged with trends and overall changes in count rates then displayed. In addition, the counts from the individual detectors may also be displayed to assist an operator in locating the source of excessive carryover particles in the furnace. An image sensor (100), such as a charged coupled device (CCD) detector, may be used to provide a visual display of detected carryover particles. The information on carryover particle count may be used in controlling parameters affecting the performance of the furnace directly, or indirectly by way of operator input.