Abstract:
A ion source comprises: - a chamber (45), - an injection to inject matter into the chamber, wherein said matter comprises at least a first species, a tip with an apex located in the chamber, wherein the apex has a surface made of a metallic second species, - a generator to generate ions of said species, - a regulation system adapted to set operative conditions of the chamber to alternatively generate ions from the gaseous first species, and ions from the non¬ gaseous metallic second species.
Abstract:
The inventions relate to a group that includes means for directing charged particles, enabling the acceleration and interaction thereof, and producing radiation caused by their movement, namely a method for changing the direction of an accelerated charged particle beam, a device for implementing said method, a source of undulator electromagnetic radiation, a linear and a circular charged particle accelerator, and a collider and means for producing a magnetic field created by a stream of accelerated charged particles. The method and the device for implementing same are based on the use of a curved channel (1) for transporting particles, which is made from a material that is able to be electrically charged, and the formation of the same kind of charge on the inside surface of the channel wall as that of the particles. The characterizing feature of these inventions is that they require the maintenance of a condition that relates the energy and the charge of the particles to the geometrical parameters of the channel, in particular the radius R of curvature of the longitudinal axis (14) thereof, and to the electrical strength of the wall material. The other devices in this group include a device for changing the direction of a beam, which defines the trajectory of the particles inside these devices to produce the required shape according to the function of the corresponding device and focuses the beam. The technical result is the possibility of rotating the beam through large angles without loss of intensity, significantly simplifying the design, and also reducing the mass and dimensions of all the devices, particularly by obviating the need for magnets and supply voltage and control voltage sources for such devices.
Abstract:
An improved method of directing a charged particle beam that compensates for the time required for the charged particles to traverse the system by altering one or more of the deflector signals. According to one embodiment of the invention, a digital filter is applied to the scan pattern prior to digital-to-analog (D/A) conversion in order to reduce or eliminate over-shoot effects that can result from TOF errors. In other embodiments, analog filters or the use of signal amplifiers with a lower bandwidth can also be used to compensate for TOF errors. By altering the scan pattern, over-shoot effects can be significantly reduced or eliminated.
Abstract:
본 발명은 방사선 치료에 사용되는 입자 치료 장치, 더욱 상세하게는 갠트리의 회전축에 수직한 입자빔을 전달하는 작은 등선량 중심 갠트리에 관한 것이다. 갠트리는 3개의 이중극 자석들을 포함한다. 마지막 이중극 자석의 각도는 90°보다 작으며 이러한 마지막 이중극 자석의 대부분의 바람직한 굽힘 각도는 60°이다.
Abstract:
Embodiments of the disclosure relate to electron emitters for use in conjunction with X-ray emitting devices. In certain embodiments the emitter includes features that prevent, limit, or control deflection of the electron emitter at operating temperatures. In this manner, the electron emitter may be kept substantially flat or at a desired curvature during operation.
Abstract:
Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.
Abstract:
An ion beam system comprises a voltage supply system 7 and at least one beam deflector 39 having at least one first deflection electrode 51a, 51b, 51c and plural second deflection electrodes 52a, 52b, 52c, wherein the voltage supply system is configured to supply different adjustable deflection voltages to the plural second deflection electrodes such that electric deflection fields between the plural second deflection electrodes and the opposite at least one first deflection electrode have a common orientation. The system has a high kinetic energy mode in which a distribution of the electric deflection field has a greater width, a low kinetic energy mode in which a distribution of the electric deflection field has a smaller width.