Abstract:
Methods and systems for starting propeller driven aircraft and other devices are disclosed. A system in accordance with one embodiment of the invention includes a removable fixture that is coupled to the propeller and has at least one portion exposed to a flowstream to rotate the propeller during engine start-up. The fixture is configured to separate from the propeller after the engine begins to turn over (e.g., after the engine starts and/or rotates above a threshold rate). Accordingly, the system can include a releasable link between the fixture and the propeller.
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor mutually aligned and distanced according to a common axis and whose propellers are driven in rotation in mutually opposite directions. Between the two ducted rotors are positioned a fuselage and a wing system formed by wing profiles forming an X or an H configuration and provided with control flaps.
Abstract:
The invention concerns a remote-controlled flying machine, in particular for surveillance and inspection, capable of hovering and comprising a spherical open-worked resistant shroud integral with a cylindrical fairing wherein rotates a propeller powered by an engine housed in a fuselage secured to the fairing with radial arms and straightening vanes.
Abstract:
A remote-control powered parafoil aircraft has an aircraft body (1) that is engine powered and hung with lines (2) from an air-expandable wing (3, 30). The lines include control lines (15) with which air flow and aerodynamic shape of the air-expandable wing are variable selectively from a foil controller (18, 19, 20) on the aircraft body for flight-mode control. Sight from a television camera (8) on the aircraft body is televised to a control unit (9) from which control data is transmitted selectively from proximate the control unit to the foil controller (14) with a multi-axis joystick or similar control, to an engine (6) on the parafoil body from an engine controller (24) and to an item servo (29) for control of optional items (45) on the aircraft body.
Abstract:
A vehicle refueling system includes an aero vehicle and a fuel bladder system. The fuel bladder system includes a fuel bladder, a pickup loop of a predetermined loop size, a reel mechanism to retract at least one side of the pickup loop to reduce the loop size, a snag sensor to sense when the pickup loop has been hooked by the retractable hook, the snag sensor initiating the reel mechanism, a compass to sense the random orientation of the loop, a radio navigation receiver to sense a location of the loop, and a transmitter to transmit the random orientation and the location. The vehicle includes a fuselage, a retractable hook with a hook sensor to detect when a fuel bladder is hooked and the loop size has been reduced by the reel mechanism, a fuel bladder stowage chamber within the fuselage, a fuel intake tube capable of drawing fuel from the fuel bladder stowed in the stowage chamber, a retraction mechanism to retract the retractable hook, a fuel transfer mechanism to transfer fuel from the fuel bladder into an internal fuel tank, and a fuel bladder discard mechanism to discard the fuel bladder after the fuel has been drawn from the fuel bladder.
Abstract:
A snubber assembly for a rotor assembly having ducted, coaxial counter-rotating rotors that is design optimized to facilitate utilization of a self-aligning bearing and for installation inboard of the corresponding flexbeam-to-rotor hub attachment joint, thereby enhancing accessibility and reducing maintenance costs. The rotor hub of the rotor assembly is design optimized for securing the snubber assembly in combination therewith and includes a plurality of arms, each arm forming an outboard clevis for attaching the rotor assembly flexbeam to the rotor hub. Inboard of the clevis, each rotor hub arm includes an outboard internal bulkhead having a bolt hole therethrough and an inboard internal bulkhead having a bolt hole therethrough. The inboard and outboard internal bulkheads in combination define a bearing cavity and an internal cavity for securing the snubber assembly in combination with the rotor hub. The snubber assembly includes a spherical self-aligning bearing, a bearing bolt, a locking nut, a snubber bracket secured in combination with the spherical bearing, and securing bolts. The spherical bearing, snubber bracket combination is rotatably mounted within the bearing cavity utilizing the bearing bolt. The bearing bolt is secured in combination with the rotor hub utilizing the locking nut, which is threaded onto the bearing bolt in the internal cavity to jam against the inboard internal bulkhead. The securing bolts are utilized to secure the snubber bracket in combination with the corresponding integrated torque tube/spar member of the rotor assembly.
Abstract:
An integrated spline/cone seat subassembly for a rotor assembly that is design optimized to minimize the radial dimensions of the rotor shafts, the rotor shaft bearings, the transmission housing, and the swashplate subassemblies thereof. The integrated subassembly includes a rotor hub having a shaft aperture with a plurality of hub splines extend radially inwardly therefrom. The lower portion of each hub spline has an outwardly tapered portion that makes a predetermined angle with respect to the hub centerline. The integrated subassembly further includes a rotor shaft having a primary shaft portion of a first diameter, an end shaft portion having an intermediate second diameter less than the first diameter, and a conic transition portion that makes a predetermined angle with respect to the rotor shaft axis. The end shaft portion has a plurality of shaft splines extending radially outwardly therefrom that defines a third diameter that is equal to the first diameter. The hub and shaft splines are sized to accommodate the torque required by the rotor assembly and interleaved to provide a rotational interlock between the rotor hub and rotor shaft. The tapered portions of the hub splines abuttingly engage and are mechanically supported by the conic transition portion of the rotor shaft. The first diameter of the rotor shaft defines the radial dimensions of the rotor shafts, the rotor shaft bearings, the transmission housing, and the swashplate subassemblies of the rotor assembly.
Abstract:
Redundancy in engine timing position sensing maintains a UAV operational in the event of failure of a primary engine timing position sub-system. The redundancy avoids duplication of the primary crankshaft timing position sensing components, and avoids adding weight, cost and component complexity. Conditioned (square) waveform(s) (102) is/are created from respective sinusoidal waveform(s). Each consecutive leading edge (103a) and trailing edge (103b) of the pulses of the square waveform (102) is derived from the crossing of the zero voltage value by consecutive sinusoidal waveforms A,B,C (e.g. Voltage (V) vs Time (t) or angular degrees). The square pulse waveform (102) is output (104) to a microcontroller (106) to create and output a pseudo crankshaft timing position signal (108) to be used by an ECU to determine ignition and fuel injection events in the event that the primary timing signal from the crankshaft position sensor (CPS) has failed. The signal (108) output to the ECU can have a missing pulse (116) (i.e. indicative of a TDC position of the engine crankshaft) as well as multiple square pulses (114) corresponding to the pulses of the initial square pulse waveform (102). The waveform signal (108) is therefore derived from the alternator waveform signal(s) and provides a pseudo crankshaft timing position signal in the event of failure of the primary or initial CPS signal.
Abstract:
An aircraft (10) having a vertical takeoff and landing fight mode and a forward flight mode. The aircraft (10) includes an airframe (12) and a versatile propulsion system attached to the airframe (12). The versatile propulsion system includes a plurality of propulsion assemblies (26a-d). A flight control system (40) is operable to independently control the propulsion assemblies (26a-d). The propulsion assemblies (26a-d) are interchangeably attachable to the airframe (12) such that the aircraft (10) has a liquid fuel flight mode and an electric flight mode. In the liquid fuel flight mode, energy is provided to each of the propulsion assemblies (26a-d) from a liquid fuel. In the electric flight mode, energy is provided to each of the propulsion assemblies (26a-d) from an electric power source.